
Methods for Investigating Mental
Models For Learners of APIs

Amber Horvath
Carnegie Mellon University
Pittsburgh, USA
ahorvath@cs.cmu.edu

Mariann Nagy
Google, Inc.
Seattle, USA
mknagy@google.com

Finn Voichick
Washington University in St. Louis
St. Louis, USA
fvoichick@wustl.edu

Mary Beth Kery
Brad A. Myers
Carnegie Mellon University
Pittsburgh, USA
mkery@cs.cmu.edu
bam@cs.cmu.edu

ABSTRACT
Despite almost all software development involving application programming interfaces (APIs), there
is surprisingly little work on how people use APIs and how to evaluate and improve the usability of
an API. One possible way of investigating the usability of APIs is through the user’s mental model of
the API. Through discussions with the developers and UX practitioners at Google along with our own
evaluations, a distributed data processing API called Apache Beam has been identified as difficult to
use and learn. In our on-going study, we investigate methods for understanding users’ mental models
of distributed data processing and how this understanding can lead to design insights for Beam and
its documentation. We present our novel approach, which combines a background interview with
two natural programming elicitation segments: the first designed for participants to express a high

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact
the owner/author(s).
CHI’19 Extended Abstracts, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5971-9/19/05.
https://doi.org/10.1145/3290607.3312897

CHI 2019 Late-Breaking Work CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

LBW0158, Page 1

https://doi.org/10.1145/3290607.3312897

level mental model of a data processing API while the second asks questions contextualized to a
data processing task to see how participants apply their conceptual understanding to a more specific
situation. Our method shows promise as pilot participants expressed a “dataflow” mental model that
matched one way that Beam has been described, resulting in a potential design modification.

CCS CONCEPTS
• Human-centered computing→ User studies.

KEYWORDS
API Usability; mental models; usability evaluation methods.

API Designers’ Mental Model

API and its documentation

?

User’s Mental Model

Figure 1: Designers develop a mental
model of how they believe the API op-
erates and how it should be used by a
programmer. The API and its documen-
tation, including the chosen method and
class names, primary uses cases, and con-
straints all inform theuser’smentalmodel.
Designers expect the user’s mental model
to be identical to their own, but, because
they can only communicate through the
API and its documentation, these must be
designed such that the user can develop a
satisfactory mental model. Adapted from
[7].

INTRODUCTION
Currently, over 20,000 APIs are registered at programmableweb.com, with countless more private APIs
for internal use. The majority of programming that software engineers do every day is finding and
learning these APIs and using them together to create new software projects. However, while APIs
are ubiquitous, there is surprisingly little work on how to design usable APIs and how API designers
may evaluate their usability prior to publishing them [6]. Some API designers are limited to releasing
their APIs as their primary method of receiving feedback on their design, as they lack expertise in
human-centered usability evaluation methods [5]. Poorly designed APIs may confuse the user on
how to use them, which has lead to bugs and significant security issues [1].
One potential way to create more usable APIs is by scaffolding a correct mental model [7], the

conceptual model in a user’s mind of how something works. Norman states “the major clues to
how things work come from their perceived structure - in particular from signifiers, affordances,
constraints, and mappings” [7], an analysis which can be applied to APIs (see Figure 1). Previous work
has shown that users with more accurate mental models of how a machine learning model worked
were able to use the system more effectively [4]. In the context of API design, there has been little
work on how an API designer can understand a user’s mental model to motivate design decisions. The
most relevant literature investigated how children with no programming experience create a mental
model about programming constructs in the context of the Pac-Man game. Participants were given
a set of scenarios and asked to describe how they would tell a computer to accomplish the action
shown in the scenario. This process, called “natural programming elicitation” [8], is adapted for our
methodology.
Mental model creation may be more difficult when the API is more complex. One such complex

API is Apache Beam [2], an API that allows users to run and manipulate large, potentially streaming
data sets using a distributed parallel processing infrastructure. Through discussions with Google’s
Apache Beam team along with our own analyses including writing Beam programs and administering

CHI 2019 Late-Breaking Work CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

LBW0158, Page 2

a survey at a Beam development conference, we have found that Apache Beam is difficult to learn
and use. We have multiple hypotheses as to why this is, including that the Python implementation
of Beam has overloaded operators used within the API that are dissimilar to typical Python syntax,
distributed data processing is challenging to understand thus the API is difficult to learn, and that
the documentation supports conflicting mental models through inconsistent diagrams, shown in
Figure 2. We chose to investigate the user’s mental models as we believe this investigation could
lead to interesting insights into how an API designer can structure the aspects of an API and its
documentation by understanding what constructs, functionality and metaphors are more natural to a
user. Furthermore, our collaboration with the Beam team gives us a unique opportunity to test our
proposed methods and design changes.

Figure 2: Two programming mod-
els which are both used in Apache
Beam’s actual documentation (these
pictures are directly copied from
the same documentation page:
https://beam.apache.org/documentation/
programming-guide/, © The Apache
Software Foundation). The functional
model has each node represent a collec-
tion of data, while the edges represent
actions performed on the data. The
dataflow model is the opposite with the
nodes representing actions and the edges
representing data.

We are interested in investigating how an API designer’s understanding of a user’s mental model
can be used to evaluate the design of an API and propose changes (in our case, proposing changes to
Apache Beam). More specifically:

• RQ1: What’s an effective methodology to extract users’ mental models for an API?
• RQ2: How can we use knowledge of the target users’ mental models to evaluate the usability of
an API and suggest modifications?

Through this work, we expect to produce a method which API designers may use when designing and
evaluating their API.We are testing the proposedmethodology on Apache Beam and its documentation
and expect to recommend and evaluate changes.

METHOD
To investigate the questions listed above, we are conducting semi-structured interviews with users of
distributed data programming APIs. In developing the method, we are taking an iterative approach to
our interview questions. To help refine the questions, we specifically chose to recruit PhD students in
the Human-Computer Interaction Institute at Carnegie Mellon University (CMU) who have experience
both in distributed data processing and in user study and method design. Currently, we have run two
participants (P1 and P2) in this method development phase. Once the questions are refined, we will
begin recruiting participants from various target populations, such as students in CMU’s Masters of
Computational Data Science who learn distributed data processing APIs similar to Beam. We will
also recruit participants, both novices and experts, with other kinds of data analysis experience but
who have not used distributed data processing APIs, as Beam aims to be accessible to people who do
not have experience with distributed computing.

Procedure. The interviewer begins by asking about the participant’s background and experience using
data processing APIs and their most recent project involving such an API, since this is likely to inform
the mental model they hold.

CHI 2019 Late-Breaking Work CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

LBW0158, Page 3

We then conduct an adaptation of the “natural programming elicitation” method, which asks
programmers to express how they think about the design of a program and the constructs used
therein by asking them to write down how they would want to call the API without having a formal
API specification. Structuring the questions such that they do not prime a participant to simply parrot
back the terminology used in the question is difficult and requires multiple iterations to get correct,
hence the iterative design. Our adaptation of natural programming elicitation involves two phases.

Apache
Beam

Streaming
Data

Distributed
Processing Cloud Storage

Window

...

... ...

Trigger

Suppose you were dealing with
data that keeps coming, like
stock prices. What would you
call the concept of getting only
the desired pieces of that data
(such as one week’s worth, or

values over a threshold)?

API

API 's Core
Concepts

Constructs
used in the

API

Natural
Programming

Elicitation
questions

If you were just starting to
design a new data processing
system for the cloud, where

multiple machines will work on
your data in parallel, how do
you start off conceptualizing
what you want to do? Please

draw out how you envision this
design.

Figure 3: How the natural programming
elicitation questions were generated. The
root of the tree is the API itself, in our
case Beam. The root has child nodes rep-
resenting Beam’s core concepts, includ-
ing streaming data, distributed comput-
ing, and cloud storage. These core con-
cepts were derived from the Beam docu-
mentation, along with our own usage of
the API and reading Stack Overflow dis-
cussions. These concepts have child nodes
representing how they currently are man-
ifested in the API. To identify how users
conceptualize the core concepts, we gener-
ate questions using the natural program-
ming elicitation method, where we try
to use prompts that do not bias partici-
pants’ answers. To identifymentalmodels,
we have participants describe how they
would begin designing a data processing
system as this results in a high level ar-
chitecture representing how a participant
wants to structure their program logic.
For eliciting terminology, we describe the
high level operations a certain construct
would perform but made sure not to in-
clude any words that would normally be
considered for a function or class name.

The first phase has the interviewer ask abstract questions to understand participants’ high level
comprehension of concepts related to distributed data processing. In developing these abstract
questions, we focused on the concepts and constructs present in Beam, as shown in Figure 3. The first
question has participants describe how they conceptualize a design for a distributed data processing
task to see if participants hold a mental model similar to either one shown in Figure 2. After the first
participant found our original question too difficult to answer, we modified the question to explicitly
ask participants to draw out how they envision this design, resulting in the question shown in the
bottom right of Figure 3. Drawing exercises have been done in prior mental model research [3]. The
other questions attempt to understand what terminology participants use when referring to the API’s
core concepts.

The second phase of the natural programming elicitation segment asks participants to brainstorm
design solutions to data processing tasks. We chose to ask these specific questions second so partici-
pants are not primed by the context of the tasks when answering the more abstract questions in phase
one. The participants are told that they are not designing the API itself, but are instead writing down
how they would like to use the API, similar to [8]. In the first task, participants are told to imagine
that they are trying to sample Google’s stock price once an hour for a week to compute an average,
where the stock prices are continually being read by the API. Then, in the second task, participants
are asked how they would tell the computer to start collecting data, how to perform some operation
on the data, and how to write the data to an external storage space.

Analysis. Transcribed interview excerpts are qualitatively coded to categorize the different types of
mental models users hold, using the models in Figure 2 as a basis. We also analyze the transcripts
to see what terminology the participants naturally use when referring to different data processing
concepts. Considering we are interested in evaluating the usability of Beam, we are interested in
how well the constructs that people naturally express match the constructs supported in Beam. For
example, one transformation Beam supports is merging two disparate sources of data. This operation
may be called a “join” in a system such as SQL, but the participant may also refer to it as a “combine”
- Beam’s name for the term.

CHI 2019 Late-Breaking Work CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

LBW0158, Page 4

PRELIMINARY RESULTS AND DISCUSSION
The Method. Our method has so far succeeded in eliciting a consistent mental model expression across
our first two participants, which would have clear design implications - the Beam documentation
may benefit by exclusively using the preferred model. The terminology used by the pilot participants
has not been consistent enough to suggest any changes to Beam’s design. This may be a result of the
abstract natural programming elicitation questions being too broad, so further versions of the protocol
will add more constraints. Alternatively, we may find that users actually differ in their preferred
terminology. All of these results are still preliminary and no conclusive decisions regarding Beam’s
documentation should be made until more data is collected and analyzed.

Figure 4: The second pilot participant’s
drawing of their data processing project.
The nodes represent analyses they per-
formon their data (including joining, visu-
alizations, and statistical analyses), while
the edges represent the flow of the data.
This matches the dataflow model.

Mental Models. Preliminary analysis revealed that both participants thought of their data processing
tasks with a dataflow mental model. P1 stated “I guess in terms of the applications I’m used to... we
might have, say, multiple machine learning or data processing nodes in that graph” implying that
they interpret the data as the edges, and the nodes as where the processing occurs. Unexpectedly, this
insight came out of a question attempting to understand the terminology people use when referring
to applying some operation to a set of data, resulting in us modifying the protocol to allow drawing.
P2 drew an image where the data processing steps are nodes, matching the dataflow model (see

Table 1: Constructs chosen by both par-
ticipants during the natural program-
ming elicitation section compared to the
constructs available in Beam. The first
row discusses operations to perform on
streaming data, the second represents
how to select streaming data, and then
third represents how to group disparate
data sources.

Beam’s name
for concept

P1 P2

PTransform Apply Transform, Nor-
malize

Window Filter Batched, Snap-
shots

Combine,
GroupByKey

Join, Merge Join, Merge

Figure 4). Assuming this trend continues, Beam’s documentation may benefit by exclusively using the
dataflow model in its graphs. However, assuming this trend does not continue and mental models are
varied among participants, we may begin asking a new question such as “what mental model would
be easiest to teach and most helpful to the user?”.

Terminology. Preliminary analysis of the terminology the participants used in the natural programming
elicitation questions showed almost no similarity to the names used for corresponding functionality
in Beam (see Table 1). This suggests that perhaps Beam’s function names may not match what users
expect. However, the original questions were vague and did not include more complex data processing
situations. As Norman stated, one way users form mental models is through constraints [7], and
both participants mentioned constraints when coming up with their answers, such as performance
requirements. The next iteration of our study protocol will explicitly ask about the constraints users
must take into account by adding additional complexity to the questions through asking additional
follow-up questions. These follow-up questions will add constraints to the data processing task.

Only P1 was able to complete the task section as P2’s session was limited to 30 minutes. P1 described
using a function called “listen” to collect streaming stock price data with a parameter called “until” to
denote how long the listen function should remain open to new data (see Figure 5). In Beam, to collect
streaming data, an object called a “window” must be instantiated and passed in as a parameter to a
method of the data collection object which returns a new partitioned data collection. The windowing

CHI 2019 Late-Breaking Work CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

LBW0158, Page 5

mechanism forces the creation of a new collection object and requires many nested function calls.
This result is further supported by our previously administered survey - some users stated thatPython Beam code:

f i xed_windowed_ i tems = (
s t o c k P r i c e s | ' window ' >>
beam . WindowInto (window .
FixedWindows (6 0)))

Java Beam code:

PCo l l e c t i on <Double > s t o c k P r i c e s
= . . . ;

PCo l l e c t i on <Double >
f ixedWindowedItems =
s t o c k P r i c e s . app ly (Window<
Double > . i n t o (FixedWindows .
o f (Durat ion . s tandardMinutes
(6 0)))) ;

P1’s imagined code:

s t o c k P r i c e s . l i s t e n (u n t i l =
never , f r equency = 60min)

Figure 5: Participant P1’s ideal code ver-
sus what is actually supported in Beam in
Python and Java for theGoogle stock price
task given the prompt: “this data is con-
stantly changing - write the code for how
you would tell the computer program to
group the data”. P1 favors a less verbose
approachwhere each parameter denotes a
behavior the function reading the stream-
ing data should perform. In contrast, the
functionality in Beam requires a separate
“apply” function be called on the data set
and create a separate data collection for
each hour.

“windowing” is not intuitive.

CONCLUSION
Understanding the mental models held by users of complex systems, such as distributed data pro-
cessing APIs, can reveal interesting insights into the assumptions users may hold and how small
changes to the constructs, names, and documentation may aid in the usability of the API. While
further testing must be done, the initial results appear promising in uncovering how people think
about data processing. This method could be applied to other APIs to uncover places where the target
API users may be thinking about concepts in a different way than the designers, and thereby inform
where the design may change.

ACKNOWLEDGMENTS
This research was funded in part through a grant from Google and in part by NSF IIS-1827385. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the sponsors.

REFERENCES
[1] Sascha Fahl, Marian Harbech, Perl Henning, Markus Koetter, and Matthew Smith. 2013. Rethinking SSL Development in

an Appified World. In Proceedings of the 2013 ACM SIGSAC conference on Computer and Communications Security (CCS ’13).
ACM, New York, NY, USA, 49–60. https://doi.org/10.1145/2508859.2516655

[2] The Apache Software Foundation. 2018. Apache Beam: An advanced unified programming model. beam.apache.org.
Accessed: 2019-01-02.

[3] Ruogu Kang, Laura Dabbish, Nathaniel Fruchter, and Sara Kiesler. 2015. "My data just goes everywhere": user mental
models of the internet and implications for privacy and security. In Proceedings of the Eleventh USENIX Conference on
Usable Privacy and Security (SOUPS ’15). USENIX Association, Berkeley, CA, USA, 39–52.

[4] Todd Kulesza, Simone Stumpf, Margaret Burnett, and Irwin Kwan. 2012. Tell me more?: The Effects of Mental Model
Soundness on Personalizing an Intelligent Agent. In ACM Conference on Human Factors in Computing Systems (CHI ’12).
ACM, New York, NY, USA, 1–10. https://doi.org/10.1145/2207676.2207678

[5] Lauren Murphy, Mary Beth Kery, Oluwatosin Alliyu, Andrew Macvean, and Brad A. Myers. 2018. API Designers in the
Field: Design Practices and Challenges for Creating Usable APIs. In Symposium on Visual Languages and Human-Centric
Computing (VLHCC ’18). IEEE, 249–258.

[6] Brad A. Myers and Jeffrey Stylos. 2016. Improving API usability. Commun. ACM 59, 6 (2016), 62–69. https://doi.org/10.
1145/2896587

[7] Don Norman. 2013. The Design of Everyday Things. Basic Books, New York, NY, USA, 26, 31.
[8] John F. Pane, Chotirat "Ann" Ratanamahatana, and Brad A. Myers. 2001. Studying the language and structure in non-

programmers’ solutions to programming problems. International Journal of Human-Computer Studies 54, 2 (2001), 237–264.

CHI 2019 Late-Breaking Work CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

LBW0158, Page 6

https://doi.org/10.1145/2508859.2516655
beam.apache.org
https://doi.org/10.1145/2207676.2207678
https://doi.org/10.1145/2896587
https://doi.org/10.1145/2896587

	Abstract
	Introduction
	Method
	Preliminary Results and Discussion
	Conclusion
	Acknowledgments
	References

