
Meta-Information to Support
Sensemaking by Developers

Amber Horvath

CMU-HCII-24-103

August 2024

Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

Committee

Brad A. Myers, Chair
Laura Dabbish
Aniket Kittur

Elena Glassman, Harvard University
Andrew Macvean, Google Inc.

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Human-Computer Interaction.

Copyright © 2024 Amber Horvath

This work was supported by the National Science Foundation, under NSF grant CCF-2007482,

and by Google. Any opinions, findings, conclusions, or recommendations expressed in this

material are those of the author and do not necessarily reflect those of the National Science

Foundation or Google.

ii

Keywords: Human-Computer Interaction, Software Engineering, Sensemaking,
Code Comprehension, Annotation, Developer Tools, Meta-Information, Developer
Experience (DX)

iii

Abstract

Software development requires developers to juggle and balance many information-
seeking and understanding tasks. From understanding how a bug was introduced,
to choosing what application programming interface (API) method to use to resolve
the bug, to determining how to properly integrate this change, even the smallest
implementation tasks can lead to many questions. These questions may range from
hard-to-answer questions about the rationale behind the original code to common
questions such as how to use an API. Software development, in contrast to other
sensemaking domains, has the unique property that many information artifacts are
created at different points during the development process (e.g., output data). Once
this challenging sensemaking is done, this rich thought history is often lost given
the high cost of externalizing these details, despite potentially being useful to future
developers.

In this thesis, I explore different systems and methods for authoring and using
this rich thought history as meta-information about code. Specifically, I have devel-
oped systems for annotating to support developers’ natural sensemaking when un-
derstanding information-dense sources such as software documentation and source
code. I then demonstrated how this meta-information can be captured and har-
nessed for new tasks, including for assessing the trustworthiness of documentation,
for creating long-form documentation as stories about the code, for capturing design
rationale and provenance data of code, and for supporting developer implementa-
tion tasks such as debugging.

This thesis begins by exploring methods for externalizing developers’ thoughts
in a form that is lightweight yet contextualized. We explore annotating as a method
for simultaneously allowing developers to offload their mental processes, while pre-
senting that information in-context for later developers to utilize. We developed two
prototype annotation systems, Adamite and Catseye, which showed the promise of
annotating for assisting developers both in overcoming issues with using developer
documentation and debugging code. The dynamic nature of code and its connec-
tion to annotated materials introduced unique design challenges in which informa-
tion can quickly become outdated and disconnected, leading both to changes in the
Catseye user interface and to the insight that leveraging the (lack of) connectivity
between annotation and documentation can support other documentation-related
tasks, which inspired Sodalite. The final two systems, Meta-Manager and MMAI,
explore capturing other forms of already-authored meta-information, such as edit
traces and log data, for question-answering support, with MMAI utilizing large lan-
guage models to make that querying possible in natural language.

The series of work introduced in this thesis points to the need to treat users’
thoughts and intents as first-class entities and that meta-information is a way of
preserving that information. I show that developers’ thought histories can be rep-
resented in the form of code-related meta-information and, through proper tooling,
can be used by later developers to accelerate their sensemaking of code.

v

Acknowledgements
Completing this dissertation was a marathon, not a sprint. And, during this marathon,
I have had the tremendous opportunity to grow as a researcher, thanks in part to the
endless support from my network of friends, family, academic and industry part-
ners, and collaborators.

Firstly, I would not be here without my amazing advisor, Brad Myers. Brad has
been with me through this whole journey, fostering my academic growth through all
of the ups and downs that come with completing a Ph.D. There were times when I
wanted to quit, but his belief, support, and resilience, even when I could not muster
up such feelings, kept me here and allowed me to reach this point – this achievement
is as much his as it is mine. I am proud to be a node on his famous advisee tree.

I am also very fortunate to have a large thesis committee of brilliant researchers
to further assist in my academic growth: Laura Dabbish, Aniket (Niki) Kittur, Elena
Glassman, and Andrew Macvean. Their varied expertise has lead to thoughtful
questions and lines of inquiry I would not have otherwise considered. They, along
with Brad, have acted as prime models of how to be an excellent researcher and
collaborator – lessons I will take with me moving forward.

Beyond Brad and my committee members, I have been privileged over the course
of my Ph.D. to have opportunities to receive mentorship from the wider HCI, Soft-
ware Engineering, and Carnegie Mellon University communities. I would like to
thank Margaret Burnett who advised me at Oregon State University and introduced
me to this wonderful, chaotic world of academic research that I am now a part of –
her mentorship has been invaluable. I would also like to thank Emerson Murphy-
Hill, my internship host at Google in 2019, who has continued to provide me support
and guidance over the last few years. Special thanks also to Andrew Begel, Patrick
Carrington, Jodi Forlizzi, Jess Hammer, Ken Holstein, Geoff Kaufmann, Queenie
Kravitz, Bogdan Vasilescu, John Zimmerman, and countless others with whom I
had the pleasure of learning from during this journey.

I am eternally grateful to my collaborators without whom this research would
not be possible. I would like to give special thanks to my amazing lab mates, Michael
Coblenz, Matthew Davis, Mary Beth Kery, Toby Li, Jenny Liang, Michael Xieyang
Liu, and Daye Nam for their support and contributions to this work. I also had
the fortunate opportunity to work with undergraduate and masters students, all of
whom helped tremendously with this work – thank you to Shannon Bonet, Kazi
Jawad, Emma Paterson, Imtiaz Rahman, Connor Shannon, Matthew Shu, and Lai
Wei.

I would additionally like to thank the sponsors of this research, my paper review-
ers, and my study participants – all of whom served as the backbone of this work.
Specifically, I thank the National Science Foundation (CCF-2007482) and Google for
the provided financial support.

https://www.cs.cmu.edu/~bam/CHI-award-talk/2023-tree.pdf

vi

My heartfelt love and appreciation extends to all of the amazing friends I have
made over the course of the last six years: Karan Ahuja, Lea Albaugh, Mark But-
tweiler, Alex Cabrera, Julia Cambre, Tianying Chen, Erica Cruz, Wesley Deng, Jonathan
Dinu, Will Epperson, Morgan Evans, Matt Ho, Roger Iyengar, Sung Jang, Hyeonsu
Kang, Pranav Khadpe, Rushil Khurana, Lynn Kirabo, Andrew Kuznetsov, Tom Magelin-
ski, Courtney Miller, Steven Moore, Huy Nguyen, Wode “Nimo” Ni, Napol Rachata-
sumrit, Sam Reig, Melrose Roderick, Vivian Shen, Jaemarie Solyst, Jordan Taylor,
Stephanie Valencia Valencia, Danny Weitekamp, Kristin Williams, Franceska Xhakaj,
Nur Yildirim, and many more. Thank you all for the laughs and good memo-
ries. Special thanks to my dear friends Sarah and Gareth Baldrica-Franklin for our
weekly-ish movie nights that helped me stay sane during COVID and beyond. And,
of course, Emily Miller, who has been like a sister to me for years.

I would also like to take space to acknowledge and appreciate a valued member
of our community who we lost far too soon: Sujeath Pareddy. As part of our 2018
cohort of Ph.D. friends, his loss has felt like a giant, gaping hole as our group moves
towards graduation – I would like to dedicate this dissertation to him. I remember
you, Sujeath, and wish you were still here with us.

Lastly, my deepest gratitude goes to my family – Diane Pearson, Steve Horvath,
and Katelyn Horvath. They have stood by me through every up and down, pro-
viding immeasurable emotional support. I could not have done it without them. I
would also like to thank my extended family and my “bonus” family, Lisa Hendrik-
sen, Casey Keating, Suzanne Robinson, Brittany Thackeray, and Renate Woods, who
all stood by and joined in the celebrations. I would also like to thank my pet family,
Ringo the Pomeranian, Eevee the cat, and Pichu the cat – I know they cannot read,
but their cuddles and love has gotten me through many exhausting paper deadlines.
Last, but certainly not least, I am forever indebted to my fiancé, River Hendriksen,
who has truly been everything to me over the course of this dissertation and beyond
– collaborator, friend, shoulder to cry on, co-author and partner. He helped me carve
out the life here in Pittsburgh that I have grown to love so much, including happy
hours at our local Primanti Bros., evenings at Pittsburgh Penguins games, and nights
at Dependable Drive-In. I love you.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Why Meta-Information? . 3

1.1.1 Meta-Information Properties . 4
1.1.2 Source Properties . 6

1.2 Overview . 8

2 Background and Related Work 13
2.1 Making Sense of Code . 13

2.1.1 Developer Tools . 13
2.2 Meta-Information About Code . 15

2.2.1 Writing About Code . 15
2.2.2 Other Meta-Information . 17

3 Adamite: Meta-Information as Annotations on Documentation 19
3.1 Overview . 19
3.2 Preliminary Studies and Design Goals 20

3.2.1 Lab Study with Hypothesis . 20
3.2.2 Corpus Analysis of Hypothesis Annotations 21
3.2.3 Design Goals . 22

3.3 Overview of Adamite . 23
3.4 Lab Study . 25

3.4.1 Method . 25
3.4.2 Results . 29

3.5 Limitations . 35
3.6 Discussion . 36

4 Catseye: Meta-Information for Sensemaking About Code 39
4.1 Overview . 39
4.2 Catseye . 41

4.2.1 Overview of Catseye . 41
4.2.2 Background and Design Goals 43
4.2.3 Implementation Notes . 45

viii

4.3 Lab Study . 46
4.3.1 Method . 46
4.3.2 Participants . 48
4.3.3 Analysis . 48

4.4 Results . 49
4.4.1 What Information Do Developers Keep Track of with Annota-

tions and Artifacts? . 49
4.4.2 How Do Developers Use Their Annotations and Artifacts? . . . 52
4.4.3 How Did Participants Identify and Fix Their Bugs? 53
4.4.4 Continued Usage . 54

4.5 Discussion . 55
4.6 My Usage of Catseye . 57
4.7 Conclusion and Future Work . 59

5 Curating Ephemeral Meta-Information with Catseye 61
5.1 Overview . 61
5.2 Background and Related Work . 62
5.3 Preliminary Exploration of Adamite Annotation Curation 64
5.4 Preliminary Study of Catseye Annotations 65
5.5 Design Probe: Catseye Annotation Curation through Re-Anchoring . . 68

5.5.1 Algorithmic Re-Anchoring . 69
5.5.2 User Interface for Re-Anchoring 71

5.6 Design Probe: Catseye Annotation Curation through Batch Processing 73
5.6.1 User Interface for Batch Processing 74
5.6.2 Merging Annotations . 75

5.7 Discussion and Future Work . 77

6 Sodalite: Meta-Information to Support Documentation Management 81
6.1 Overview . 81
6.2 Background and Related Work . 82
6.3 Sodalite . 83

6.3.1 Templates . 83
6.3.2 Code Links and Suggestions . 85
6.3.3 Support for Reading . 86
6.3.4 Support for Maintenance . 87

6.4 Evaluation of Sodalite . 89
6.4.1 Study Design . 89
6.4.2 Study Results . 90

6.5 Discussion and Future Work . 92

7 Meta-Manager: Meta-Information for Question-Answering 95
7.1 Overview . 95
7.2 Overview of Meta-Manager . 96

ix

7.2.1 Developer Information Needs 97
7.2.2 Scenario . 98
7.2.3 Detailed Meta-Manager Design 100
7.2.4 Implementation . 105

7.3 Lab Study . 106
7.3.1 Method . 106
7.3.2 Participants . 109
7.3.3 Quantitative Results . 110
7.3.4 Qualitative Results . 111

7.4 Discussion . 114
7.5 Limitations and Threats to Validity . 115
7.6 Future Work . 116
7.7 Conclusion . 118

8 MMAI: Accelerating Sensemaking with Logs and LLMs 119
8.1 Overview . 119
8.2 Background and Related Work . 120

8.2.1 Terminology and Background . 120
8.2.2 Print Debugging . 122

8.3 Exploratory Interview Study . 123
8.3.1 Method . 123
8.3.2 Results and Discussion . 124

8.4 Overview of MMAI . 126
8.4.1 Scenario . 127
8.4.2 Detailed Design . 130
8.4.3 Implementation . 134

8.5 Discussion . 137
8.6 Future Work and Conclusion . 138

9 Conclusion and Future Work 143
9.1 Summary of Contributions . 143
9.2 Discussion and Future Work . 145

9.2.1 Designing with Information Ephemerality In Mind 145
9.2.2 Designing for the Software Engineer of Tomorrow 146
9.2.3 Designing for Meta-Information as a First-Class Entity 147

9.3 Concluding Remarks . 148

A Meta-Manager Architecture and History Model 151

B MMAI GPT-4 Prompts 155
B.1 Pre-Processing History Prompt . 155

B.1.1 Prompt . 155
B.2 Default User Query Prompt . 156

x

B.2.1 Prompt . 156

C Chapter 3 Study Replication Materials 157
C.1 Preliminary Study Materials . 157

C.1.1 Protocol . 157
C.1.2 Task Source Code . 161

C.2 Lab Study Materials . 161
C.2.1 Adamite Authoring Condition Protocol 161
C.2.2 Adamite Using Condition Protocol 168
C.2.3 Control Condition Protocol . 175
C.2.4 Post-Task Survey . 178
C.2.5 Task Source Code . 179

D Chapter 4 Study Replication Materials 181
D.1 Catseye Condition Protocol . 181

D.1.1 Consent . 181
D.1.2 Part 1: Tutorial . 182
D.1.3 Part 2: Task . 189
D.1.4 Part 3: After Task . 189

D.2 Control Condition Protocol . 190
D.2.1 Consent . 190
D.2.2 Part 1: Tutorial . 191
D.2.3 Part 2: Task . 194
D.2.4 Part 3: After Task . 194

D.3 Post-Task Survey . 195
D.3.1 Notes . 195
D.3.2 Survey . 195

E Chapter 6 Study Replication Materials 199
E.1 Sodalite Study Protocol . 199

E.1.1 Introduction . 199
E.1.2 Tutorial . 200
E.1.3 Study . 203

E.2 Post-Task Survey . 204

F Chapter 7 Study Replication Materials 207
F.1 Meta-Manager Study Protocol . 207

F.1.1 Tutorial . 207
F.1.2 Task . 210
F.1.3 End Task . 211

F.2 Post-Task Survey . 211

xi

G Chapter 8 Interview Protocol 215
G.1 Protocol . 215

G.1.1 Questions . 215

Bibliography 217

xiii

List of Figures

1.1 An exemplar instance of meta-information (in this case, an annota-
tion) attached to a source (here, code), as discussed in Chapter 4. Key
properties of meta-information, along with properties derived from
the source document, are presented as a way of structuring some of
the key features we discuss and use when designing our systems de-
scribed throughout this thesis. Blue properties are associated with
the information source, while green properties are associated with the
meta-information artifact itself. 3

1.2 The “virtuous cycle” of code meta-information generation during soft-
ware development (top arc) and how that meta-information may be
used by later readers (bottom arc). The various forms of meta-information
each of my systems generates and exemplar questions that that infor-
mation may answer are color-coded: Adamite (Chapter 3) is shown
in green, Catseye (Chapter 4) is shown in red, Sodalite (Chapter 6) is
shown in orange, Meta-Manager (Chapter 7) is shown in blue, and
MMAI (Chapter 8) is shown in purple. 8

3.1 Adamite’s sidebar (on the right) open on an already-annotated web
page in the browser. (1) shows the pop-up for when a user selects
some text – at this point they can begin creating a new annotation by
selecting an annotation type. (2) shows the menu of question anno-
tation prompts users can choose from. (3) shows a published normal
annotation with two anchors. (4) shows how the annotated text ap-
pears on the web page. (5) shows Adamite’s search and filter pane.
(6) shows the pinned annotation list button. 23

3.2 The correct output for the task. Each number refers to the step num-
ber. (1) creates and renders the 4 images. (2) puts the images in 2 rows.
(3) arranges images by a user-defined property using the arrangeBy

method. (4) requires the user to set a label on their data, such that
elements with the same label will have a matching stripe along the
bottom of the picture. 26

3.3 The number of annotations removed for each reason, along with the
annotations kept, out of the 91 total annotations. 2 highlight annota-
tions were retained as the users edited them to add text, making them
semantically identical to normal annotations. 27

xiv

3.4 The difference between reading and each of the other two conditions
is statistically significant, but the difference between control and au-
thoring is not. The average number of steps completed is in the center
of each box. 29

3.5 The proportions for each type of the annotations made in the author-
ing condition (out of 91), with the exact count for each type above the
bar and the proportion in parentheses. 30

3.6 Which participants made what type of annotation. A1 through A10
refer to the 10 authoring condition participants. R1 and R2 are the
two reading condition participants who created annotations. 33

4.1 Catseye as it appears in Visual Studio Code. (1) shows how the an-
notation appears in the editor – the code is highlighted with a light
gray box and, when hovered over, the annotation content appears in
the pop-up with any other documentation. Clicking on the “Show
Annotation” button opens and brings into focus the Catseye pane if
it is not already visible, then scrolls to the annotation. (2) shows the
annotation location(s) in the scroll bar gutter in a light green. (3) is a
search bar for searching across the user’s annotations. (4) is the Cat-
seye pane – the pane is segmented into sections corresponding to the
annotations’ locations in the file system, with the “Current File” sec-
tion currently open. (5) is an annotation – the top of the annotation
shows the author and creation time information on the left, and but-
tons for various actions. (6) shows the two code anchors for the anno-
tation. (7) is the content the user added as an annotation to the code
snippets. (8) is a snapshot of the code at a previous version with a
comment added by the author about this version of the code. (9) is a
reply to the original annotation. 40

4.2 An annotation made by a participant in our study. (1), (2), and (3)
show the 3 different code anchors the participant created across mul-
tiple files, with the first anchor (“gameloader.js”) as the site of their
question, and the remaining two anchors and reply (4) answering
their question. The annotation was pinned. 42

4.3 The average number of annotations and artifacts participants created
during the study. 50

xv

5.1 An example scenario in which an annotation’s anchor is updated in
multiple ways after a git pull. In the case only the position changes,
the annotation content should stay as-is and the anchor will update
to represent the new start and end positions. If the anchor is deleted,
it is unclear whether to delete the annotation or to re-attach the anno-
tation at a different, semantically similar point. Likewise, if the con-
tent within the anchor’s bound changes (this._copyVscodeMetadata
to this.getCopyMetaData(), in the figure), under different circum-
stances it may make sense to delete the annotation, keep the annota-
tion on the new anchor content, or re-attach the annotation elsewhere. 63

5.2 How the Adamite website appears. (1) is the search and filter pane for
finding relevant annotations. (2) is the list of groups the user is a part
of. (3) is the sort bar – currently the list is sorted by time in descending
order. (4) are the batch operations a user can do on their set of selected
annotations. (5) is an annotation – it is currently selected, shown at
the green checkmark in the top left corner. (6) is another annotation
with two anchors (the two green rectangles with text and a URL) and
annotated text. 64

5.3 How the re-anchoring algorithm expands its search outwards, given
no sufficient match at each step. (1) is the original anchor content and
location, (2a) and (2b) are the 5 lines above and below, respectively, the
original anchor location, (3) is all of the code belonging to the parent
node of the original anchor in the AST, and (4) is the whole file. 69

5.4 How running the matching algorithm at the token level with this._copyVscodeMetadata

across multiple tokens in multiple code lines would yield different re-
sults, given the string difference and location difference. Note that
the most reasonable re-anchoring spot from Figure 5.1 has the highest
match score. 70

5.5 The user interface when re-anchoring an annotation. (1) shows the
last-known anchor, along with the surrounding code in green. (2) is
the Show/Hide Suggestions button, allowing the user to leave the an-
notation unanchored, if the user so desires. (3) is the Manually Rean-
chor option – the user can select some code in the editor, then click the
“Manually Reanchor” button to set the anchor to their selected code.
(4) is the first of multiple candidate anchors. (5) are the options for
what a user can do with a candidate anchor – they can either remove
that particular anchor as an option, “Reanchor” their annotation to
that anchor, or click through the carousel (i.e., 4 gray dots) to view
their other options. (6) is the annotation. 72

xvi

5.6 The user interface for batch operating on annotations in Catseye. (1) is
the search bar, (2) is the set of sorting and filtering operations includ-
ing sort by location or time, scope of annotations to include (includ-
ing annotations made on this file, this project, or across all projects),
who authored the annotation, what annotation type it is (similar to
the Adamite annotation types), and whether or not the annotation has
been marked as “resolved”, is pinned, or is anchored. (3) is the set of
batch operations a user can perform on any selected annotations, with
options for (from left to right) merging (Figure 5.7), pinning, sharing,
resolving, or deleting. (4) are collapsed annotations which are cur-
rently checked, meaning they will be included in any batch operations
selected at (3). (5) are the buttons for operations a user can perform
on a single annotation. 74

5.7 The UI for merging annotations. (1) are batch operations for creat-
ing the merged annotation through importing all of the content from
the original annotations. (2) is a preview of the annotation anchors,
with the option to remove them (trash can icon to their right). (3) is
the regular annotation authoring UI, such that users can add types
and text that may not be in the original annotations. (4) is the first
annotation that is being used to create the merged annotation – the
checkmark shows the anchor will be included. (5) points at the icons
for importing annotation content and replies into the resulting anno-
tation – annotation replies can be added to the merged annotation’s
main body text by clicking the double chevron icon, while the single
upwards arrow will bring the reply’s content up as a reply. (6) is the
reply content for this annotation. (7) is the other annotation to be in-
cluded in the merged annotation – since it is a highlight annotation, it
has no annotation text or replies. 76

6.1 The editor for authoring a story using Sodalite – this is a simplified
and anonymous recreation of P2’s story for demonstrative purposes.
(1a) and (1b) show the relationship between the code editor and the
story editor – in this case, the user has clicked the code Link, prompt-
ing the suggestions pane to show identifiers related to Link. (2) is
the template list with the selected “Overview” template highlighted.
The “Code References” at (3) are represented in a list (4a, 5a, and 6a)
and their locations are shown in the story text at (4b), (5b), and (6b),
respectively. The title of the story is (7). 84

xvii

6.2 How Sodalite appears after a story has been authored. (1) shows the
hover text when a code link is interacted with in the code editor. (2)
is a code link that has been marked as “needs review” given that the
original code (shown in (3)) and the code in the editor (at (1)) are dif-
ferent. (4) are two other collapsed code stories. 86

7.1 Meta-Manager as it appears within Visual Studio Code: the pane ap-
pears in the bottom area of the editor, with the left area displaying a
visualization of the history of the code file over time, while the right
area displays information about a particular code version. 96

7.2 How the code box looks when expanded to show a code version – in
this case, a “Paste” event version. (1) shows the buttons specific to
a “Paste” code version, including the“See Copy” button which will
navigate the user to the corresponding copy event on the timeline (if
the copy happened in a different file, then the code box will update
with a preview of how the code in the other file looked at the time
of the copy, which can be clicked on to change to that file); (2) shows
the text explaining what happened with this particular paste event —
clicking in this area will open the editor tab showing what the code
file looks like now; (3) shows the code for this version, along with a
light blue highlight on the code that was pasted. 101

7.3 A zoomed-in portion of the timeline shown in Figure 7.1. This zoomed-
in portion shows around 120 edits between Version 710 and Version
830, with the scrubber set around Version 740, when a user pasted
code from Stack Overflow. 105

7.4 Each question scored by participants in terms of how often they en-
counter similar questions in their own programming experiences. . . . 111

8.1 MMAI as it appears within Visual Studio Code: the pane appears in
the bottom area of the editor, with the left area displaying a visual-
ization of the history of user-selected code nodes that the user wants
to inspect, while the right area displays information about each code
node, now including additional output information and an interactive
chat component. The two code version boxes for calculateBoxValue
and App are collapsed (see expanded version in Figure 8.3). 127

8.2 How mmlog calls appear in the editor, including star icons in the gutter
to either include or exclude the calls and their corresponding nodes
from the rendered “Joint History” visualization (Figure 8.1-1) and code
version boxes (Figure 8.1-2b and 3b) in the MMAI pane. Filled-in star
icons mean the nodes will be included. Note that these two functions,
calculateBoxValue and App, are in different files. 128

xviii

8.3 How an expanded code version appears in MMAI. (1) is similar to
Meta-Manager (see Figure 7.2), in that information about the edit is
shown including when it occurred and what the code looked like at
that point in time, along with any additional meta-information (with
this version containing no additional meta-information). (5) shows
the optional, supplementary information when mmlog is used, includ-
ing the log statement (6) (in case multiple mmlog statements exist in
one version), most recent log statement and values along with aggre-
gate counts and a button to ask about that value (7), and computed
queries that can be sent to the LLM, given the mmlog statement and
value (8), along with the option for the developer to write their own
query (9). 129

8.4 How the chat interface appears within the MMAI interface, below the
log and version data. (1) is the user’s query – in this case, this is a pre-
generated query, created by pressing the “Compare to current version
button” (Figure 8.3-C). (2) is the LLM’s response. (3) is a link to the
code version the system is looking at when coming up with its an-
swer. (4) are the log values the system found in its history search. (5)
are the generated follow-up questions given the answer the system
generated. (6) are the references the system used, including links to
code versions and a summary of the span of history it looked at when
coming to its answer. 132

8.5 How an mmlog version appears in the MMAI database. One code ver-
sion owns a collection of these mmlog versions dependent upon how
many mmlog statements the MMAI node has at a particular version
and how many times each mmlog statement is invoked. 136

A.1 A simplified version of how Meta-Manager’s data model and archi-
tecture look on a file called “example.ts”. 152

A.2 How a version of a node appears in the Meta-Manager database on
Firestore [61]. Note that the id of the version includes the node ID
and the time at which the version was captured. This version does
not include any additional meta-information, such as web activity. . . 153

xix

List of Tables

3.1 Counts of each issue and question annotation that identified or was
caused by an issue discussed in [249]. Note that two code examples
did not work because they suffered from a fragmentation issue, so
they are coded both as a poor code example and a fragmentation
issue. Similarly, all fragmentation questions were caused by frag-
mented code examples, so they are also coded as both a fragmentation
question and code example question. 31

4.1 The bugs present in the two games. “Value” refers to a construct in
the program, such as an operator, boolean, or variable. 47

4.2 How the study task encapsulates the types of information Catseye
supports. 48

4.3 The annotations and artifacts participants created during the study
while working on each bug. The experimental condition made 40 an-
notations while working on bugs, while the control condition created
35 artifacts. The last 2 columns refer to the proportion of annotations
made about that bug out of the 40 annotations made while debugging,
and the proportion of control condition artifacts made about that bug
out of the 35 artifacts made while debugging, respectively. 53

7.1 Each question that was asked during the task, along with what in-
formation need from prior literature it corresponds to, the steps that
could be taken in Meta-Manager to answer the question, and how par-
ticipants performed on the question in terms of correctness and time
spent (in minutes). Note that some questions represent more than one
information need, such as Q5, which both asks what code is related to
the commented out loop, but also why the loop was commented out,
which is a rationale question. 109

1

Chapter 1

Introduction

Developing software requires developers to keep track of many types of information
while performing various interleaved tasks. For example, to debug some code, a
developer must first navigate through the code to determine what part or parts of
the code are responsible for the bug [129, 142, 197], run the code and diagnose the
output to understand how and when the code fails [131, 142, 197], write code and
possibly research solutions online to fix the bug [29, 147, 263], then test the code
again to ensure the solution worked [73]. Typically, the developer’s mental model
of this rapidly-evolving problem space is not externalized [33, 151, 191], which can
be problematic as working memory is limited [99, 160, 243]. Further, development
processes are often iterative [126], can be interrupted [189, 191], and may just be one
task amongst many that the developer is handling [127], leading to further cognitive
strain.

Given this significant cognitive cost, many research projects have enumerated
the challenges in both writing and understanding code. Just some of the challenges
include maintaining task awareness [159, 189, 191], making sense of external li-
braries and their documentation [4, 104, 174] (with software documentation, itself,
having its own set of well-known problems [4, 143, 180, 212, 249]), understanding
the rationale behind the current code [127, 138, 159, 226], determining what part or
parts of the code are relevant to the change the developer is introducing [126, 132],
and designing that change and implementing it [132, 147]. Completing these smaller
information-intensive tasks often results in the creation of knowledge that is lost, ei-
ther because it is not externalized by the progenitor of the information or because it
is not logged.

Some qualities of programming make tracking this information especially chal-
lenging in comparison to other complex sensemaking domains. For one, a devel-
oper’s end-state is not often reaching an answer or decision given these implicit
questions, but is to utilize that information to complete some programming-related
task, such as fixing a bug. Secondly, the information landscape is often changing as
the developer introduces new code, which can produce new runtime behaviors and
introduce new questions. This means that:

• the developer does not normally have the mental bandwidth to externalize this
information beyond, perhaps, a short note [107, 151]

2 Chapter 1. Introduction

• this information is implicitly associated with the corresponding code that stems
from the gained knowledge [107, 147]

• as the code changes, the information the developer learns is highly contextu-
alized to the time in which it was discovered or created [17].

We call this information created as a byproduct of authoring or making sense of de-
veloper materials (e.g., code, web resources, documentation, etc.) meta-information.

In software development, one of the most ubiquitous and well-known meta-
information types are code comments. Often created as a way of keeping track of
bugs [240] and open to-do items [237, 238], documenting code [220], or informal ver-
sioning of code [119], code comments can serve as rich information about what a de-
veloper is doing when managed with tooling [247]. Other forms of meta-information
about code include Git commit messages, code documentation, code versions, and
so on. The act of developing software produces a vast and dense information land-
scape comprised of these various forms of meta-information. Meta-information also
exists in other information authoring domains such as Microsoft Word or Google
Docs comments.

In this thesis, I1 explore developing software systems to capture and present
programming-related meta-information to assist in overcoming known challenges in
developing software. This work is predicated on the knowledge that many forms of
meta-information are generated at different times during the software development
life cycle and I hypothesize that this knowledge, when captured and presented in a
comprehensible manner that leverages the code or other source information within
the developer’s working context, can be useful. By associating this meta-information
with code, the connection between what the developers care about (i.e., the code)
and all of this other information that normally is not captured but can actually an-
swer developers’ implicit questions about code (e.g., visited web pages for where
some code came from, code edit history for when some change occurred, added and
removed and commented out code for reasoning about what a developer has tried,
etc.) is an effective way to keep the developers within their working context, while
providing them the information they need to answer their questions.

My thesis aims to investigate the following claim:

By tightly coupling meta-information to its source origin through anchoring to
a particular location at a point in time, and by leveraging properties of the source
environment, information that would otherwise be unavailable or intractable can
be useful for developers in both the short-term and long-term.

For the initial author in the short-term, I show that externalizing their thoughts
and questions as meta-information can help with keeping track of information while
completing cognitively-demanding software engineering tasks when anchored to a

1The projects discussed in this thesis were lead by myself but were developed in collaboration
with other researchers – out of respect for their contributions, I will predominately use “we” when
discussing the various projects and papers that comprise this thesis.

1.1. Why Meta-Information? 3

FIGURE 1.1: An exemplar instance of meta-information (in this case, an annotation) attached to a
source (here, code), as discussed in Chapter 4. Key properties of meta-information, along with prop-
erties derived from the source document, are presented as a way of structuring some of the key fea-
tures we discuss and use when designing our systems described throughout this thesis. Blue proper-
ties are associated with the information source, while green properties are associated with the meta-
information artifact itself.

source material, such as code or documentation. Over a longer span of time, these
traces of the context in which the initial development occurred can help with an-
swering otherwise unanswerable questions about code and for better understand-
ing unfamiliar code and learning resources. I also show that code meta-information
can be used, not only for reasoning about some code, but also for evaluating written
materials about code, given the connection between meta-information and its corre-
sponding code. An overarching goal of this thesis is to treat information about code
as a first-class entity, not unlike the code itself, given that the rich history of code
and its development is often the answer to developers’ questions, but is not typically
captured in a systematic or easily explorable manner. I achieve this through creat-
ing a tight coupling between meta-information and its source, bringing the meta-
information into the rich source environment and, thus, presenting it as a first-class
entity.

1.1 Why Meta-Information?

To better introduce code meta-information and its potential value for code compre-
hension, along with the source document and environment it can be associated with,
I will briefly discuss some of the properties and values we found throughout this

4 Chapter 1. Introduction

thesis and our exploration of meta-information systems (see Figure 1.1). These prop-
erties both represent facets of our meta-information systems and design considera-
tions that we had to intentionally support given each system and its goal. Ultimately,
we believe these to be some of the most important properties to consider when de-
signing a meta-information system, especially with respect to supporting developer
sensemaking.

1.1.1 Meta-Information Properties

Author

Different types of meta-information can come from different sources – the user, sys-
tem, or an intelligent agent. Broadly, our systems have found success through sup-
porting all 3 authors, given the information type. We support allowing more per-
sonal meta-information to come from the user (Chapters 3 and 4), which can be
curated, scaffolded and transformed with tooling (Chapters 5 and 6). For more de-
scriptive and laborious-to-track information, such as visited web pages and output
values, we have found success in automating the collection and contextualizing that
information with system-authored meta-information (Chapters 7 and 8). AI can then
make sense of that information to assist in higher-order reasoning tasks (Chapter 8),
in turn creating additional meta-information that may be stored.

Audience

With self-authored meta-information, such as annotations, notes are commonly in-
tended to be primarily for the author’s personal benefit (such as a “to-do” note).
Oftentimes, the author must make a conscious decision to transform the note into
something shareable, either because the text requires some “clean up” due to terse-
ness and/or lack of formality or because not enough information was included in
the original note in order to be comprehensible by someone else [221]. To support
cleaning the text, this process can be supported through curation methods (Chapter
5) and through structuring the text from the outset such as with templates (Chapter
6). To convey more context, intentional system design decisions, such as support-
ing multiple anchors and annotation types, can remove the need for conveying this
additional context in text through conveying the context through the note’s proper-
ties (Chapter 3). We also found a benefit in designing a system entirely for a more
private and personal context with our code annotation system, which was initially
designed primarily for an individual’s information tracking when developing soft-
ware (Chapter 4).

Content

Meta-information, by definition, is any information associated with some artifact –
thus it can be truly anything. This intentional ambiguity leads to design questions

1.1. Why Meta-Information? 5

of what granularity to capture information at, what types of information to support,
and how to present this information in a comprehensible manner. We found success
in supporting generalized information “workspaces” by using the flexible proper-
ties of annotations – we found we could support high-level categorization with
types, connecting of resources with multiple anchors, and prioritization with pin-
ning (Chapters 3 and 4). We then explored capturing other domain-specific forms of
meta-information such as code versions through the unifying and general purpose
nature of annotations (Chapter 4). This large amount of meta-information allows us
to transform the meta-information into newer, more comprehensive forms such as
curated or merged documents (Chapters 5 and 6).

Choosing what granularity to capture meta-information at and how to present
it are highly-dependent upon the sensemaking task we are aiming to support. For
making sense of code history, including log data, we sought to capture as much
potentially-useful information as possible at a low-level of granularity considering
it is unclear what will be helpful at a later point in time (Chapters 7 and 8). However,
this leads to issues of scale resulting in a needs for a complementary presentation.
Broadly, we found success in coupling together complementary views for sensemak-
ing – a high-level visualization to flatten a potentially large set of data into a singular
view, with hints of what information may be most relevant given the tasks we are
supporting, and a lower-level detail view for in-depth exploration (Chapter 7). De-
signing meta-information systems allows us to also capture information that is not
normally stored due to issues of scale and contextualization – we explore capturing
large amounts of log and history data and leverage the unique properties of anchor-
ing information in order to both scale down the amount of information to store and
present it in a meaningful manner later.

Anchor

Arguably the most important property we explored in our work, information “an-
chors” act as the binding between the meta-information and its source. With annota-
tions, the source anchor(s) are the connection between the note and some text or code
– we found success in leveraging that connection for clustering related information
(Chapters 3 and 4), conveying context for later users (Chapter 3), and leveraging
this tight coupling for later curation-related tasks such as merging information and
creating documents (Chapters 5 and 6). This connectivity can also support more
domain-specific tasks such as navigating a code base (Chapters 4 and 6). In later
systems, we automatically generated connections using the unique source structure
of code and connected that code to meta-information. In this way, semantically-
meaningful blocks of code became anchors for various forms of meta-information
across time. The tight coupling afforded by anchoring meta-information to its pro-
genitor was a powerful enough design that it is a central component in every system
discussed in this thesis.

6 Chapter 1. Introduction

Time

The time at which some meta-information is created is often an important facet of
the meta-information itself. Some types of meta-information, such as notes, are often
authored with the expectation that they will only be used in the moment and, thus,
do not need to persist across time. Other forms are fully bound to the time in which
they are made and are immutable, such as code versions where their purpose is to
capture some code’s state at a particular point in time. This work explores the spec-
trum of how to think about time and its relative impact on meta-information given
the type of meta-information. For our annotation systems, time was a key factor in
understanding relevance of annotations across time (Chapters 3, 4 and 5), especially
with respect to source code and changing source content over time. Our later history
systems treat time as an immutable construct by which meta-information is bound
to, given a code anchor (Chapter 7) or an execution of a log statement (Chapter 8).

1.1.2 Source Properties

We consider the “source” to be the space in which the progenitor of some meta-
information exists. In this thesis, this is most often the integrated development en-
vironment (IDE) and its source code, but may also refer to web-based information,
including documentation.

Mutability

Directly related to the meta-information properties of “time” and “anchors”, source
mutability makes it particularly challenging to keep some piece of meta-information
anchored over time. Our systems have explored various ways of handling this de-
sign challenge – with our annotation systems we wanted to provide the user direct
control over their anchoring points, leading to a large amount of user control and
flexibility (Chapters 3 and 4). However, that came at the cost of having less certainty
as to how to handle updating the anchor across document changes – see Chapter
5 for a whole discussion on this challenge. Later systems switched to utilizing the
inherent structure of the source code to derive anchor points without requiring user
intervention. This approach still requires some text-matching and inference, which
can be wrong, and loses the ability for a user to directly control their anchor points
– yet we had more success in keeping meta-information attached across document
changes than in the prior systems. Ideally, a design can be as automatic as possi-
ble and minimize user intervention, unless the user wants to control their anchoring
locations in which case a system should attempt to assist in the process through
utilizing other contextual information.

1.1. Why Meta-Information? 7

Provenance

A key form of meta-information about the source is the provenance of the source, or
where and when the source material came to be. By taking advantage of the working
context of the source, we can sometimes automatically derive provenance data by
recording copy-paste events (Chapter 7). However, capturing a full “trail” of prove-
nance information can be difficult if, e.g., some code in my IDE originally came from
Stack Overflow which came from some other developer’s IDE which came from a
Git repository, and so on. Composing and capturing even part of this trail requires
extensive domain-specific tooling, which we explore in Chapter 7. When looking
forward with respect to meta-information systems, I expect information provenance
to become one of the more important pieces of meta-information in order to ascer-
tain how trustworthy some information is, given whether or not it came from an AI
system or from Stack Overflow, and how much research a developer did prior to
coming to an implementation decision [153].

Document Structure

An advantage in providing tailored meta-information support in a specific work-
ing context is being able to provide domain-specific features. An example of this
is leveraging the source document structure in order to provide additional benefits.
In our systems, we largely utilized the source code document structure to assist in
(re-)anchoring our meta-information to some code (Chapters 4, 5, 6, 7, and 8). We
additionally derived page-level details from the structure of the web page in order
to send additional meta-information about, e.g., a ChatGPT thread to complement
our other historical data (Chapter 7). For supporting other domains, it is important
to consider what meta-information can be extracted given the source material itself
and how it may be leveraged to support information comprehension tasks.

Environment

Meta-information is often either authored by a user or derived from interaction
traces created by the user as a byproduct of completing their primary task. Sim-
ilar to the discussion on document structure, having detailed and comprehensive
knowledge of a user’s working context and environment allows us to support richer
meta-information capture and presentation. We tightly coupled many of our sys-
tems functionalities to the practices developers employ in the IDE. For example, an-
notation anchors are updated and code versions and log data are pushed on file save
(Chapters 4, 7, and 8) and we capture and push provenance data, both within IDE
and within browser, on copy and paste (Chapter 7), respectively. Detailed knowl-
edge of a user’s working environment and the activities they are completing in that
environment can lead to the automatic capturing and anchoring of more forms of
meta-information.

8 Chapter 1. Introduction

FIGURE 1.2: The “virtuous cycle” of code meta-information generation during software development
(top arc) and how that meta-information may be used by later readers (bottom arc). The various forms
of meta-information each of my systems generates and exemplar questions that that information may
answer are color-coded: Adamite (Chapter 3) is shown in green, Catseye (Chapter 4) is shown in red,
Sodalite (Chapter 6) is shown in orange, Meta-Manager (Chapter 7) is shown in blue, and MMAI
(Chapter 8) is shown in purple.

1.2 Overview

To begin exploring to what extent meta-information can be used to help software
developers overcome their sensemaking barriers given the aforementioned design
properties of meta-information and its relationship to a source document, we devel-
oped a series of systems that exemplify the qualities we expected would be helpful
for developer sensemaking, including question-asking and answering. Figure 1.2
shows an example “cycle” of virtuous meta-information creation and usage given
a developer’s initial work and subsequent comprehension by a later2 developer.
This figure acts as a complement to Figure 1.1, in that it situates the example meta-
information and its properties into the larger context of what types of meta-information
the systems support capturing and example usages of that meta-information for
comprehension. Thus, for each item on the top arc, we developed support for the
various design properties shown and discussed in Figure 1.1 and discussed in Sec-
tion 1.1, based upon the type of comprehension support the corresponding tool(s)
was designed to provide.

2Note that a “later” developer, despite having questions about the initial work, may be the same
developer as the initial author – research has shown that code comprehension by an initial developer
about their own code, after some time has passed, can be as difficult as understanding unfamiliar code
written by a different developer [159].

1.2. Overview 9

We began by exploring annotations as a vehicle for associating a user-authored
note with a document as a way of crowd-sourcing documentation notes to lower
documentation-usage barriers. To this end, we designed the Adamite system (Chap-
ter 3), a web browser-based annotation tool specifically designed for annotating soft-
ware documentation with features designed to combat known documentation usage
barriers. We chose to focus on documentation, given the large body of software engi-
neering research discussing particular pain points that we expected meta-level notes
to address. For example, some prior literature has discussed the challenges in find-
ing pertinent information in documentation and how this information may be frag-
mented across multiple locations within the documentation [4, 52, 249] – to address
this barrier, Adamite allows developers to add multiple text anchor points to their
annotation, such that all relevant parts of the documentation may be connected to
one note. Adamite demonstrated the efficacy of utilizing developer-authored meta-
information presented as annotations to assist later developers in their own pro-
gramming tasks – developers using Adamite annotations performed significantly
better on a programming task.

Adamite was successful in helping later developers utilize meta-information about
code to overcome their information barriers – however, we found that the initial
authors did not experience a significant effect, despite appreciating the annotation
tool. Given the need for more support for the initial author in utilizing their meta-
information and the increased need for information tracking support when actively
writing code in an IDE, I developed Catseye, a Visual Studio Code [166] extension
for annotating code (Chapter 4). Catseye not only supported adding free-form text
to code that was abstracted away from the original source code (as opposed to code
comments) but also supported other developer information-tracking activities in-
cluding collecting output data and lightweight versioning of code, with the option
to annotate these other forms of meta-information. Developers using Catseye per-
formed better when attempting to keep track of information while debugging some
purposefully-confusing code.

In active usage of Catseye, it became clear that the extremely mutable nature of
code can lead to information within the annotations quickly becoming out-of-date.
Keeping annotations attached to the correct code is surprisingly non-trivial – while
some simple text edits can be easily interpreted as small arithmetic changes to the
line number and offsets along the bounds of an annotation’s anchor, for large scale
or batch changes, such as a Git merge, the question of what, exactly to do with the
annotation and where, if at all, should the annotation be re-attached becomes more
complex. Further, given that the nature of these annotations is often, but not al-
ways, ephemeral, therein lies a need to support developers in actively managing
their meta-information. This lead us to wonder how we could support develop-
ers in curating their annotations (Chapter 5), given developers’ perceived value of
the annotations and to explore tooling approaches within Catseye that would allow

10 Chapter 1. Introduction

developers to perform this curation, including algorithmically re-anchoring annota-
tions after significant file changes and batch-level operations to act on annotations
for, e.g., removing large sets of out-dated annotations.

Our exploration into how annotations go out-of-date lead to the insight that the
relationship between annotations and their anchor points can be a signal of out-of-
dateness. Considering out-of-dateness is a large problem in documentation as well,
the insight that the connection between code and text is both always changing and
the accuracy of the link can be used as a signal for the trustworthiness of the doc-
ument led to us extending Catseye for long-form documentation with the system
Sodalite (Chapter 6). Long-form documentation can be a useful information source,
given that it co-evolves with the code, but practice shows that does not always hap-
pen [143]. Sodalite uses the connection between code and text and its ability to
connect the code to the text as a metric for how “healthy” the document is in the
user’s current programming context. This system showcases how meta-information
can be used for new activities beyond simply displaying data.

Adamite, Catseye, and Sodalite were all successful in supporting developers in
authoring their own meta-information, but, in their designs, were reliant upon the
programmer choosing to actually write some information. Further, what develop-
ers have to say about code is only one type of meta-information and is incapable
of answering some of the types of questions developers may have, such as when
a particular change was introduced. To expand the types of questions we could
support answering with meta-information and to lower the cost of authoring use-
ful information, we developed the Meta-Manager, a Visual Studio Code extension
with a supplementary Google Chrome extension, that automatically listens for and
captures editing events of interest in both the editor and the browser (Chapter 7).
Some editing events of interest occur within the editor including copy-pastes be-
tween code patches, which may inform where some code came from and when (i.e.,
provenance), and code commenting, which may show the author trying different
solutions or the author adding or changing documentation. Other edits of inter-
est occur in the web browser – we are particularly interested in copy-pastes from the
browser (e.g., code snippets taken from GitHub, ChatGPT code snippets, or answers
from Stack Overflow posts) into the editor, which may inform why some code is writ-
ten the way it is, given relevant Google search queries and/or visited web page(s).
AI-generated code from ChatGPT, in particular, contains a rich collection of inter-
esting additional meta-information about the development of the code, such as the
initial query, chat title, and possibly a back-and-forth conversation between the user
and the agent, which may inform what the developer’s original intent was. Indeed,
in our study developers were able to use the Meta-Manager to answer otherwise
unanswerable questions about code using this rich version history, with informa-
tion about AI-generated code presented as code meta-information being particularly
valued by participants.

With the rise of large language models in recent years, meta-information is only

1.2. Overview 11

going to become more valuable, not only as a means for potentially training these
models, but also as a mechanism for potentially accelerating a developer in their in-
dividual sensemaking journey. Code meta-information can be used as a dataset to
pull from when utilizing LLMs for software development tasks as a form of retrieval-
augmented generation (RAG). A context in which this ability to revisit and reason
about code changes may be particularly valuable is print debugging, such that de-
velopers can use that history to understand how or why some code no longer works
and compare that code to the current code. In order to support that use case, I ex-
tended the capabilities of the Meta-Manager to allow for direct querying on its his-
torical dataset while expanding the type of information it captures, including out-
puts produced by console.log. I performed a small qualitative needs-finding inter-
view to determine what questions developers would most like to ask their code and
output history and designed functionalities within the new Meta-Manager (hereafter
referred to as “MMAI”) to support those tasks (Chapter 8). With this new archi-
tecture in place, I showcase that utilizing meta-information for RAG can accelerate
otherwise onerous tasks and assist in reasoning when debugging.

In conclusion, I reflect on the contributions made and the insights gained through
this body of work, and discuss what outstanding questions and subjects exist for
future research (Chapter 9). Broadly, this thesis points towards a future in which
meta-information, including historical details and user-authored notes, are tightly
coupled given anchoring to support the personalization of, shareability of, and com-
prehesion of dense and often confusing materials. I envision a space in which source
code can be shared like an old textbook handed down from a mentor, annotated with
all of the rich insights, thoughts, provenance data, and questions I would otherwise
be unaware of in order to understand the full story. This information can then be
utilized by LLMs for summarization, retrieval and querying, and further personal-
ization tailored towards my specific sensemaking needs given my particular tasks.
The software engineer of tomorrow is going to be working in a space where, per-
haps, writing code is not as paramount as understanding it and meta-information
points towards a way of capturing and presenting the information to assist in that
understanding.

13

Chapter 2

Background and Related Work

Developers are tasked with managing many different types of information when
both authoring and making sense of code. In the following sections, I discuss prior
literature about how developers make sense of code, tooling support for that pro-
cess, meta-information about code (including documentation), and prior systems to
support the creation and management of some of these types of meta-information.

2.1 Making Sense of Code

Researchers in both Human-Computer Interaction (HCI) and Software Engineering
have extensively studied how developers make sense of or comprehend code [27, 29,
58, 66, 127, 129, 130, 131, 134, 159, 187, 213, 214, 223]. These studies are typically sit-
uated in the context of understanding unfamiliar code [58, 127, 134, 159, 214], which
is a common and significant challenge for developers [174]. For example, developers
need to understand unfamiliar code when learning a new API [56, 63, 66, 108, 151,
174, 176, 212], joining a new code base [18, 51, 113, 210, 235, 248], adapting code from
online sources [12, 29, 151, 177], taking over a code base from a departed coworker
[178, 209, 210], and so on. Some of the challenges developers must overcome when
understanding unfamiliar code include maintaining their task awareness [157, 170,
189, 191, 238]; developing mental model of the code [27]; questions, hypotheses, and
facts learned about the code [78, 138, 226]; the codes’ different versions and outputs
[119, 142]; and “working set” of code patches [27]. How developers actually com-
plete these difficult information tracking tasks is further confounded by developers’
varying experience levels [64, 133, 140, 145, 159], learning styles and preferences [16,
49, 64, 145, 164], and the nature of their tasks [197]. Even when an implementation
task is small or the code is more familiar, developers must continually keep track of
these varied information types for maintaining software and have varying degrees
of success [126, 147].

2.1.1 Developer Tools

Given the diversity of types of information developers must keep track of, a num-
ber of research tools have focused on supporting these different activities. One
challenge developers experience when making sense of code is navigating through

14 Chapter 2. Background and Related Work

code and finding and relating code patches of interest (sometimes referred to as the
“working set”) [27, 45]. Researchers have investigated various solutions to ease
navigation costs including clustering code patches as “bubbles” [27] or in a dedi-
cated workspace [1, 45], changing navigation techniques away from clicking and
into zooming and scrolling [59], and augmenting code comments to serve as naviga-
tional way points [89, 237, 238, 247]. Another way of easing navigation that is now
widely adopted is a “thumbnail” image attached near the scroll bar that shows the
whole file in a minimized format [57]. Other projects have attempted to ease naviga-
tion through suggesting code patches to support various tasks including completing
a pull request [79, 118], fault localization [73, 196, 197] and for helping newcomers to
code projects find where to begin [17, 51, 100]. In all of these cases, the code patches
have a higher-level semantic meaning as to why they are relevant to the developer –
a relationship which is only sometimes made clear given the tool. All of my tools at-
tempt to make the relationship between this meta-information and its corresponding
code traceable and bi-directional to assist in comprehension and navigation.

Relevant to my work are projects that have focused on leveraging the large amount
of already-written code and developer resources that exist online to assist in over-
coming cognitive barriers incurred when programming. These projects commonly
suggest code snippets taken from documentation [28, 162, 182], open source repos-
itories [245], or question-answer forums [110, 273], given a developer’s query. The
underlying rationale for this design, namely that developers care about code first
and foremost, also drives my design approaches, but my systems capture other
forms of information beyond just code since code, alone, cannot answer every type
of question. Other systems lower the barrier of foraging for programming-related
information on the web through integrating web-based functionalities (e.g., web
search) into the IDE [47, 83, 92, 188]. My systems, especially the Meta-Manager,
attempt to also better connect the activities that are naturally happening both in the
editor and the web browser, but do not require the user to adopt a new browsing or
development environment. Meta-Manager also has an advantage over these prior
tools through not only connecting web activity and the IDE but contextualizing these
activities to particular code versions and supporting search to support foraging [233]
through queries [217], such that the developer can understand not only what hap-
pened with some code, but when and why.

Over the last few years, a new class of developer tools have risen to prominence
for making sense of code: LLM–powered coding assistants. Some of these popular
tools include ChatGPT [183] and GitHub Copilot [82]. The allure of these tools and,
subsequently, their rapid adoption is perhaps unsurprising – unlike many prior de-
veloper tools, they are easily accessible, requiring minimal to no set-up, and can im-
mediately provide a benefit to developers through supporting both code generation
and code understanding tasks. Some preliminary reports even suggest that the na-
ture of software development itself may be shifting as these tools become more pop-
ular [44], with programmers reporting around 31 percent of their new code comes

2.2. Meta-Information About Code 15

from AI tools [148], they use these tools for high-level guidance on how to approach
a task [122], and they spend more time reviewing AI-generated code [24, 169]. Since
the public release of these tools in late 2022, there have been many studies looking at
the quality of the generated code [55, 71, 242, 267, 272], novice versus expert usage
of these tools and the potential harm they may introduce for novices and their learn-
ing [179, 202], along with how these tools impact perceived productivity [230, 257].
These tools can also be used to “short-cut” code comprehension through directly
answering questions about unfamiliar code [36, 115, 227], including APIs [175], and
assisting in cognitively-demanding tasks such as debugging [43]. My work extends
this line of inquiry through utilizing developer meta-information as a repository
unto which an LLM can query upon to support code sensemaking when debugging.

2.2 Meta-Information About Code

2.2.1 Writing About Code

Of particular relevance to my work, especially the earlier work around annotations
is how developers write about their code. One strategy developers employ when
keeping track of information is writing down, either through code comments or
external notes, what they want to keep track of. In the case of code comments,
research has explored what types of information are in code comments [220, 237,
240, 258], whether the code comments are actually useful [26, 201, 258], and how
these comments are later used [74, 204] and cleaned up [240, 241]. An analysis of
2,000 GitHub projects found 12 distinct categories of comments developers write
and found that information designed for code authors and users appeared less often
than more formal types of documentation, suggesting that developers are not fre-
quently commenting for their own benefit or these comments are removed prior to
submitting the code to publicly-viewable repositories [220]. Other meta-information
about code that is sometimes included in code comments are links to where some
code originated from, in the case that the code was copy-pasted from online [11, 93].

Developers also employ note-taking for tracking information about code [46, 151,
157, 159, 189]. These notes are commonly used as memory-aids [46, 151, 189] both
for themselves and for communicating insights to other teammates [39, 159], for
keeping track of useful resources [151], and for keeping track of their progress on
a development task [157, 189]. Notably, these notes often lose their initial utility
given their lack of context, while others are authored with the full expectation that
they will be thrown away [151] as a form of “information scrap” [21]. Of particular
relevance, particularly to Catseye, are tooling solutions for developers that directly
support note-taking to assist in code comprehension, such as Codepad [190] or Con-
notator [114]. Connotator explores supporting different levels of code annotations
to support program comprehension, but does not allow annotating partial selections

16 Chapter 2. Background and Related Work

such as expressions or strings nor does it allow the developer to write free-form con-
tent, instead only supporting pre-determined tags [114].

Code development and coordination with a software team commonly results in
the creation of other types of written works. This includes version control system
(VCS) commit and pull request messages [149, 154, 246], computational notebooks
[94, 120, 198, 254, 255], bug reports [23, 205], and code review messages [9, 87, 135,
172, 173, 216]. Developers may also write about their code with the intent of helping
others, whether that be a blog post [184, 185, 192], question-and-answer forum post
[8, 262, 276], or tutorial [94, 96, 192, 244, 253]. Most of these written artifacts suffer
from the same challenges that other written works about code face in that they are
typically abstracted away from the original code context, thus making them difficult
to discover or glean answers from.

Documentation

Perhaps the most ubiquitous and studied type of writing about code is software doc-
umentation. Much prior literature has investigated what information is written in
documentation [97, 158], what the problems are with that information [3, 4, 35, 68,
143, 163, 180, 212, 214, 249], how this documentation is authored [53, 222, 236], and
automating documentation processes to offset authoring costs and standardize the
information present in documentation [2, 91]. Notably, the majority of this documen-
tation work is in the context of software documentation for end users of a software
library, e.g. API documentation [174]. Slightly less work has focused on documen-
tation created for other developers working on the same code base, such as internal
documentation about the code base [210, 222] or open source on-boarding files [244],
where the primary goal is to help other developers understand and contribute to the
code base.

Another form of documentation relevant to our previous discussion of naviga-
tion are diagrams that attempt to visualize the digital repository and space of code
into a more physical and spatial form. Examples include code maps [60], which de-
scribe each code component as a connected node along a hierarchical graph, and
code cities [259], which visualize object-oriented programs as cities that can be tra-
versed and interacted with. Both of these approaches attempt to more directly vi-
sually situate a developer in the documentation with respect to the part of the code
they are working on. Sometimes these diagrams are made for social purposes on the
fly for communicating with teammates, given the teammates’ respective information
needs and knowledge [39].

Once some software documentation is made, researchers have studied how de-
velopers maintain those documents and use that information. In studies of usage,
researchers have identified many problems of documentation that lead to the docu-
mentation being less trustworthy [153], including questions about how up-to-date
the information is [4, 143, 249] and how complete the information is [212, 214].

2.2. Meta-Information About Code 17

Maintaining documentation has also been found to be challenging, with develop-
ers reporting on the costly time spent on updating documentation [249] and a lack
of clarity on where and how to update the documentation given code changes [76].

2.2.2 Other Meta-Information

Code History

Developers keep track of many other types of information that are not or cannot be
written down. One ubiquitous form of meta-information about code is code history,
i.e., code versions across time. Most software engineering utilizes a VCS (e.g., Git)
for keeping track of code releases and to make collaboration across potentially many
different versions of code possible. However, in between formal check-ins of code,
developers have reported a need for keeping track of their code versions. Whether
that be in the context of data science programming where intermittent versions may
represent small-scale experiments [95, 119, 120, 224] or when maintaining a code
project and trying different solutions for fixing a bug [269] or adapting a code exam-
ple [29], developers employ a variety of methods for keeping track of these intermit-
tent versions such as commenting out the code [119]. Some systems (e.g., [186, 255])
have leveraged discussion threads about code and mapped the threads to the rele-
vant code – an approach not dissimilar from Catseye, Meta-Manager, and Sodalite.
Both these less formal intermittent code versions and committed code versions can
serve as meta-information about the “current” version of the code in service of, e.g.,
understanding how some code evolved over time.

To support sensemaking of code history, prior research has explored creating vi-
sualizations of code history. Most code history visualizations reserve the x-axis for
representing time, but the y-axis and presentation of the code and edits varies. Some
tools adopt a stream visualization in which each “stream” represents a block of code
[261]. The stream expands, retracts, and moves up and down along the y-axis as
lines of code are added, removed, and the location of the code moves, respectively.
Notably, this visualization approach was inspired by systems visualizing other his-
torical, text-based data including Wikipedia page edit histories [252] and Google Doc
histories [256]. Other visualizations reserve the y-axis and data points along the vi-
sualization for edits that happened to some code at a particular time [269, 270, 271].
Some visualization approaches remove the timeline-style presentation in order to
support other activities, such as Quickpose [206], which uses a node-based graph to
support actively modifying and annotating the history. Seesoft [65] and Augur [80]
choose to visualize the line of code itself and imbue additional meta-information
such as who most edited the code and what part of the code structure is this his-
tory a part of. Meta-Manager and MMAI differ through combining the approaches
of both aggregating information through a stream visualization and showing lower-
level details in an additional widget.

18 Chapter 2. Background and Related Work

Outputs and Logs

Another form of code meta-information closely related to code versions are outputs
generated by code. Outputs may be as simple as a console.log message (i.e., log
statement and value) or as complex as a full graphical user interface. In either case,
developers must often keep track of how these outputs change with respect to their
code edits [119]. This may happen when the developer must revert to a prior, func-
tional version after a bug is introduced or to compare differences in outputs with the
intention of choosing an optimal version [269]. Some tools have been developed to
keep track of outputs with respect to the code versions that generated them [120],
while others have focused on making the output itself more useful through addi-
tional affordances and improved presentation [112].

Log statements and values, in particular, have been extensively studied [81].
Logs are particularly challenging for developers to manage given the scale of logs
often accrued in an enterprise system [219], their presentation in plain text making
them hard to work with [112], and their decoupled nature from the code and runtime
context in which they were generated [62]. Further, log statements, not unlike code
comments, often suffer from the “information scrap” [22] challenge, in that they
can be written for a single, throw-away line of inquiry as part of print debugging
[19]; otherwise, they may be meant to exist indefinitely to capture code performance
metrics [81], but their intent from the outset is not always apparent. Given these
challenges, some prior tools have attempted to mitigate these problems through re-
ducing scale [219] and changing log presentation [112]. Despite the short-comings
of logging, they are nonetheless ubiquitous, especially in the context of “print state-
ment debugging” [144, 260]. Given this ubiquity as a form of code meta-information
and their applied nature when debugging, we developed MMAI as a way to better
manage and make sense of their contents using AI while leveraging the architecture
of the Meta-Manager to address challenges of scale and lack of context.

In our work, we design tooling approaches to support the authoring and man-
agement of programming-related meta-information for sensemaking. Whether this
meta-information is in service of externalizing and tracking some thought about
code, an intermittent code version, a piece of useful documentation, or the history
of a function, this work explores how to properly capture, present, and anchor that
information to make it more useful for an individual user and across time.

19

Chapter 3

Adamite: Meta-Information as
Annotations on Documentation

This chapter is adapted from my paper:

[104] Amber Horvath, Michael Xieyang Liu, River Hendriksen, Connor Shan-
non, Emma Paterson, Kazi Jawad, Andrew Macvean, and Brad A. Myers.
“Understanding How Programmers Can Use Annotations on Documenta-
tion”. In CHI Conference on Human Factors in Computing Systems (CHI ’22),
April 29-May 5, 2022, New Orleans, LA, USA. ACM, New York, NY, USA, 16
pages.

3.1 Overview

Application programming interfaces (APIs), including libraries, frameworks, tool-
kits, and software development kits (SDKs), are used by virtually all code [174].
Programmers at all levels must continually learn and use new APIs in order to com-
plete any project of significant size or complexity [63]. In learning APIs, develop-
ers depend upon the documentation, including tutorials, reference documentation,
and code examples, along with question-and-answer sites like Stack Overflow [143].
However, developer documentation is known to be problematic with common and
significant issues including incompleteness of information, out-of-date information,
and fragmented information [3, 4, 212, 249].

In this chapter, we investigate how developer-authored meta-information about
documentation, presented as annotations, may help developers overcome some of
these barriers. We hypothesized that the highly-contextualized nature of developers
notes when anchored to text within the documentation, can help the initial annotator
better utilize their notes about documentation. Further, when given proper tooling
support, this information can be leveraged by later users of the documentation to
overcome their documentation barriers.

20 Chapter 3. Adamite: Meta-Information as Annotations on Documentation

To explore the concept of annotations as a way of supporting short notes on doc-
umentation that are useful both for the author and for later readers, we started with
a preliminary lab study that explored the concept of annotations on documenta-
tion using an off-the-shelf Chrome extension, Hypothesis [111], and then we per-
formed a corpus analysis of annotations on documentation created using Hypothe-
sis. Given what we learned from these preliminary analyses, we developed our own
documentation-specific annotation tool, Adamite1. Next, we ran a two-pass user
study where we explored the kinds of annotations developers authored when learn-
ing a new API and then had another set of developers read those annotations while
attempting to complete the same API learning task using Adamite. We compared
these participants to a control condition which had no annotations. From these stud-
ies, we provide evidence that annotations are useful in helping developers overcome
documentation-related issues.

3.2 Preliminary Studies and Design Goals

3.2.1 Lab Study with Hypothesis

To explore the efficacy of annotations as a useful learning device for API learning
tasks using documentation, we ran a preliminary study where people learned an
unfamiliar API while using Hypothesis [111]. In summary, we found that devel-
opers are able to use annotations in the ways we envisioned, but that annotation
authoring and reading could be improved for developers by adding additional tool-
ing features.

Study Design

The preliminary study had two distinct phases: the first phase was focused on un-
derstanding how developers author annotations during an API learning task, while
the second phase focused on how developers read annotations that are already at-
tached to documentation. In each phase, the 4 participants completed an API learn-
ing task adapted from my previous study [103] that required them to forage through
API documentation to complete a programming task. The full set of study materials
can be found in Appendix C, Section C.1.

In the authoring condition, participants were given the documentation with no
annotations, and instructed to add annotations when they learned anything useful,
had questions about the content in the documentation, or had any other thoughts
about the documentation. In the reading condition, participants were given the same
documentation, but with annotations added. The annotations included annotations
that I authored that were designed to be helpful for this task given what develop-
ers were confused about in a previous study [103], and other annotations that were

1Adamite stands for Annotated Documentation Allows for More Information Transfer across
Engineers and is a green mineral.

3.2. Preliminary Studies and Design Goals 21

designed to be “distracting” to simulate the more realistic case where not all anno-
tations would be relevant. In total, we had 23 “helpful” annotations and 44 “distrac-
tor” annotations, totalling 67 unique annotations.

Results

In the authoring condition, the 4 participants together authored a total of 19 unique
annotations. Each participant, on average, authored 4.75 annotations, with annota-
tions averaging 4.41 words. Hypothesis also allows users to simply highlight a piece
of text on a web page without adding any text content to the anchor (hereafter re-
ferred to as “highlight” annotations) — out of the 19 unique annotations authored,
5 were these simple highlight annotations.

Many of the annotations that participants created showed a part of the docu-
mentation that illustrated how to achieve some part of their current task. Other
annotations served as task reminders or open questions the author had about the
documentation content.

In our analyses, we also found that participants had many questions about the
documentation (on average, 10.8 questions per participant) which were not anno-
tated. While trying to answer these questions, participants routinely encountered
more confusing information, resulting in them losing track of their original ques-
tions. Given this confusion, participants struggled to answer their questions, with
only 29% of questions definitely answered. Notably, Hypothesis does not have any
way of marking or following up on a question.

From this initial preliminary study, we found evidence that annotations may en-
hance the original text. Additionally, we found support for different types of infor-
mation needs that are not directly supported by Hypothesis, such as keeping track of
open questions. In the reading condition, we also learned through our “distractor”
annotations that annotations need to be easy to skim and relatively short in length
and we need more support for discovering annotations, either through more anchor
text points or filter and search.

3.2.2 Corpus Analysis of Hypothesis Annotations

In order to supplement our preliminary study, we queried Hypothesis’s API to get a
list of public annotations which developers have already made on official API docu-
mentation including public APIs from Google, Microsoft, Oracle, and Mozilla, along
with other developer learning resources including Stack Overflow, W3Schools, and
GitHub.

Across these sites, we found 1,995 public annotations. Of the 1,995 annotations,
196 were questions about the content of the documentation, and 995 were highlight
type annotations. Of the 1,000 annotations with content, 16 of the annotations were
to-do items the author wanted to follow up on, 43 pointed out problematic aspects

22 Chapter 3. Adamite: Meta-Information as Annotations on Documentation

of and potential improvements to the documentation, and 79 were created to specif-
ically call out important or useful parts of the documentation2. These annotations
were authored by 298 unique users (average = 6.694 annotations per user, minimum
= 1, maximum = 677) across 1,143 unique web pages. The authored annotations
were, on average, 8.79 words long and were anchored to text that averaged 12.35
words.

We believe some of the 1,000 annotations that contained content could benefit
other developers with additional tooling support. For example, a Hypothesis user
annotated the text “you can pass the path to the serve account key in code” and
asked how they can do that. This user then later annotated a code example show-
ing how to achieve this behavior at a different point in the documentation and said
“finally found it”. While these two annotations depend upon one another in order
to make sense and point to different parts of the documentation, Hypothesis does
not allow for these annotations to reference one another, suggesting a need for bet-
ter tooling support for multiple anchors for annotations and keeping track of open
questions.

These annotations provide support for our claim that some developers are will-
ing to write annotations and attach them to documentation, as they are already
doing this. Moreover, the annotations we found follow some of the patterns we
identified in our preliminary study, such as open questions and issues. However,
Hypothesis’s general-purpose annotation system does not have enough support to
effectively utilize these annotations.

3.2.3 Design Goals

Given prior literature and what we discovered in our preliminary studies, we devel-
oped the following design goals for our system:

• Support developer note taking through annotations. Developers sometimes
take notes on what they have learned [151, 157, 159, 189], even when using
documentation (Section 3.2.2, [151]).

• Support developers’ question-asking and answering. Developers have many
questions about unfamiliar APIs and their documentation ([63, 226], Sections
3.2.1 and 3.2.2).

• Support diagnosing documentation issues. Developers commonly identify
documentation issues including obsolete information [4, 249], incorrectness
([4, 249], Section 3.2.2), incompleteness [4, 37, 52, 211, 212, 249, 278] and ambi-
guities [4, 211, 212, 249] but have no way of sharing that information.

2These counts were generated by counting instances of phrases like “incorrect” and “todo” in the
annotation content, then manually reviewing all of the annotations that contained those phrases to
determine if they were actually e.g., an issue or todo item.

3.3. Overview of Adamite 23

FIGURE 3.1: Adamite’s sidebar (on the right) open on an already-annotated web page in the browser.
(1) shows the pop-up for when a user selects some text – at this point they can begin creating a new
annotation by selecting an annotation type. (2) shows the menu of question annotation prompts users
can choose from. (3) shows a published normal annotation with two anchors. (4) shows how the
annotated text appears on the web page. (5) shows Adamite’s search and filter pane. (6) shows the
pinned annotation list button.

• Support developer task-tracking. Developers take notes on open tasks that
they must work on, especially when interrupted [189], and occasionally take
notes on tasks they must complete that are related to parts of the documenta-
tion they are reading (Section 3.2.2).

• Support connecting related parts of the documentation. Developers need to
build up a mental representation of an API [108, 124, 151] and connect related
resources [4, 52, 249].

• Support better discovery of important parts of the documentation. Develop-
ers, especially selective [30] and opportunistic [29] learners, want to quickly
find information that is relevant to them ([163], Section 3.2.1).

3.3 Overview of Adamite

We designed Adamite, a Google Chrome browser extension, specifically to help de-
velopers keep track of important information, organize their learning, and share
their insights with one another. To create an annotation, a developer, who we call
the annotation “author” simply needs to open the Adamite sidebar, highlight some
text on the web page (called the “anchor”), select the type of annotation, optionally
add text to a rich text editor that appears in the sidebar, and click on the publish
button. Once published, the text that the user annotated will be highlighted on the
web page and the annotation will appear in the Adamite sidebar – see Figure 3.1.

24 Chapter 3. Adamite: Meta-Information as Annotations on Documentation

Users may also add tags and additional anchors to the annotation. Annotations can
be published publicly, privately, or to a group of Adamite users. Once an annota-
tion has been published, it may be replied to by others, and edited or deleted by the
original author. Clicking on the anchor icon on the annotation will scroll to the part
of the web page the annotation is anchored to (or will open a new tab if the anchor
is on a different page) – conversely, clicking on the highlighted text on the web page
will scroll to the corresponding annotation in the sidebar.

One goal of Adamite is helping developers structure and share what they learn
in the documentation in a way that is useful both to themselves and for later devel-
opers. To achieve this, we developed annotation types. In addition to the typical
“normal” (with a user-written comment) and “highlight” (just the anchor and no
comment) annotations, Adamite supports question, issue, and to-do annotations.
We chose these three annotation types to assist developers in keeping track of their
questions, to point out and possibly attempt to rectify issues found in the documen-
tation, and to help them keep track of their tasks. Issue annotations have a button
intended to alert key stakeholders, such as the documentation writers, of the de-
scribed problem with the documentation. Question annotations are stateful, mean-
ing unanswered annotations will stay available until the developer either marks the
question as “answered” (at which point the answer will be appended to the original
question), or marks the question as “no longer relevant”. To-do annotations are also
always available until they are marked as complete.

Question and to-do annotations are always available using Adamite’s “pinning”
mechanism. Web annotation systems typically only show annotations that are on the
user’s current web page. However, considering that documentation may be spread
across many pages and developers may visit many web pages when attempting to
complete a programming task, we added in the ability to pin an annotation, such
that it is always available in a list at the top of the sidebar. To-do and question anno-
tations are pinned by default, since the developer is unlikely to find their answer or
finish their task while they are on the same web page.

Developers can further structure and connect their information using multiple an-
chors. A common documentation problem is fragmented information, so developers
can compose together related pieces of information using the annotation as a joining
method. This feature can be used to connect parts of the documentation that the
user feels should be presented together, or to better contextualize their annotation.
Developers may also use anchors as a way of collecting multiple parts of the doc-
umentation that they feel are related to one another given the developer’s task and
their evolving understanding of the API.

For later users of the annotated documentation (who we call annotation “read-
ers,” but can be the same person as the annotation authors), it is likely that not all of
the annotations are relevant to what the developer is trying to do. To help readers
find the most relevant annotations, we support search (using Elasticsearch [67]) and
filters (see Figure 3.1-5). Readers can search across a web page, website, or across all

3.4. Lab Study 25

of Adamite’s annotations and filter on the annotation type, when the annotation was
created, and what tags the author has tagged the annotation with. Readers may also
sort the annotations by their location on the page or by the time at which the annota-
tion was authored. Adamite also follows the design of other web-based annotation
systems by only showing annotations on the current web page, by default.

3.4 Lab Study

In order to understand the role that annotations play in developers’ documentation
usage while learning a new API and using Adamite, we ran a lab study with three
conditions to understand how developers create and use annotations. Participants in
one condition authored annotations while completing an API learning task, and par-
ticipants in the second condition read these participant-authored annotations. The
third condition was a control condition where participants completed the same API
learning task using just the documentation. The lab study consisted of a training
task, a programming task, and a survey to assess the participant’s background. The
full protocol for the lab study across each condition can be found in Appendix C.2.

3.4.1 Method

Training

Each condition included a training exercise using Tippy, a React library for making
tooltips, and its documentation to either familiarize the participants with Adamite
and its functionality (Adamite conditions) or to familiarize them with thinking aloud
while reading through documentation (control). Participants in the Adamite condi-
tions learned how to create an annotation of each type, reply to an annotation, add
an additional anchor to an existing annotation, search, filter, edit and delete an an-
notation and practiced thinking aloud while performing these tasks. The control
condition practiced thinking aloud when they had a question, found an answer to
their question, and identified an issue in the documentation.

Task

For the task, participants were asked to complete an image aggregation and orga-
nization task using Piling.js (hereafter referred to as “Piling”), a JavaScript library
for handling visualizations [195]. Piling was chosen as it is a relatively small library,
meaning the participants would have adequate time to gain a high-level understand-
ing of the library during a lab study.

The task was to use Piling to take a set of four provided images and render and
sort the images (see Figure 3.2 for the output and detailed steps and Appendix C.2.5
for a link to the code). The task was chosen as, despite its apparent simplicity, it re-
quires the participant to learn some of Piling’s core concepts. Participants were ob-
jectively graded upon how many of the 4 steps they were able to complete correctly.

26 Chapter 3. Adamite: Meta-Information as Annotations on Documentation

FIGURE 3.2: The correct output for the task. Each number refers to the step number. (1) creates and
renders the 4 images. (2) puts the images in 2 rows. (3) arranges images by a user-defined property
using the arrangeBy method. (4) requires the user to set a label on their data, such that elements with
the same label will have a matching stripe along the bottom of the picture.

To start, participants were given a JavaScript file containing comments stating the
goal of each step.

In addition to completing the programming task, participants were asked to
think aloud and to pretend as though they were in a small team learning Piling. De-
pendent upon the condition, further instructions differed slightly. Control condition
participants were told that they needed to relay what they had learned to their team-
mates in whatever way they would normally do so, such as note taking. Adamite
authoring participants were instructed to create annotations with any questions or
thoughts they had about the documentation, issues they found in the documenta-
tion, and thoughts they wanted to follow up on and that these annotations would
be shared with their future teammates. Each authoring participant started with an
un-annotated version of the documentation. In the Adamite reading condition, par-
ticipants were given annotated documentation and were told to pretend that the
annotations were created by a teammate who had already learned Piling and were
instructed to speak aloud when an annotation was helpful or unhelpful. Participants
in the reading condition were not required (but were allowed) to create annotations
or interact with the annotations present in the documentation. The full set of study
materials can be found in Appendix C.

Annotation Selection

In choosing annotations to include in the reading condition, two researchers sepa-
rately coded each annotation created during the authoring condition for whether or
not to include it. Inclusion criteria included identifying matching annotations across
participants to select which one was the clearest, most appropriately anchored, and
concise – qualities informed by our preliminary study and others [5]. The predom-
inant cause for the majority of annotations to be removed was redundancy – par-
ticipants commonly annotated information related to the first two steps of the task

3.4. Lab Study 27

FIGURE 3.3: The number of annotations removed for each reason, along with the annotations kept, out
of the 91 total annotations. 2 highlight annotations were retained as the users edited them to add text,
making them semantically identical to normal annotations.

(see Figure 3.3)3. We also excluded annotations that the participant later stated were
incorrect or that the participant deleted, and annotations that lacked sufficient con-
text (including all highlight annotations). Finally, we omitted to-do annotations, as
they are designed only for the original author’s usage. The researchers had a 71%
agreement – in the cases where the researchers disagreed, they had a discussion un-
til agreement was reached. Through this process, we were left with 31 annotations.
One additional annotation was added by myself to assist with the final step of the
task, as no participant in either the authoring condition or control condition got to
that point of the task. After this process, we had 32 annotations, with 18 normal type
annotations, 10 issue type annotations, and 4 question annotations, 3 of which were
answered4. We did not omit any annotations due to relevance or correctness, since
we wanted to leave in anything that at least one participant wanted to comment on
to be more realistic.

Participants

We recruited 31 participants using departmental mailing lists at our university and
social media. One participant could not finish the study due to technical difficul-
ties, so we only report on the 30 who completed the whole study. Each condition
included 10 participants and were randomly assigned between the authoring and
control condition – the reading condition occurred after the other two conditions so
all remaining participants who signed up were assigned to that condition.

All of the participants were required to have some amount of experience using
JavaScript, not to have used Piling before, and to have been programming for at least

3Note that this is due to being a lab study – in a realistic situation, people would likely read an
existing annotation and not create a redundant one.

4We included one unanswered question to account for the realistic situation that not all questions
would be answered and because the question asked was a common question among participants –
notably, answering this question was not necessary for succeeding in the task.

28 Chapter 3. Adamite: Meta-Information as Annotations on Documentation

1 year (actual minimum: 1 year, maximum: 20 years, average: 7.98 years). The par-
ticipants’ professions included graduate students in computer science-related fields,
user experience researchers with a computer science background, and professional
programmers. The gender composition of our study was 19 men, 10 women, and
1 non-binary person. Participants across each condition had a similar amount of
JavaScript experience and years of programming experience.

All study sessions were completed remotely using video conferencing software.
Participants were audio and video recorded, and each participant’s session took ap-
proximately 90 minutes, with 45 minutes of that time allotted for the programming
task. Each participant was given access to the Piling documentation and a Code-
Sandbox.io [31] project which had JavaScipt, HTML, and CSS files with Piling in-
stalled and a photo of the output, along with written-out steps for the task. Partici-
pants were compensated $25 for their time, save for 2 participants who elected not
to be compensated.

Analysis Methods

Across all of the conditions, we objectively graded participants on whether or not
they succeeded in completing each of the 4 steps outlined in the task instructions.
In the Adamite conditions, we analyzed the video recordings and log data to count
how many annotations participants authored, and how often they interacted with
Adamite and its annotations.

We qualitatively coded the annotations developers made in order to character-
ize developers’ annotating strategies. Using an open coding method, two authors
coded the normal type annotations by independently coding each annotation and
refining categories based upon their individual codes. For issue and question type
annotations, we coded the annotations dependent upon what issue in a list of com-
monly defined documentation issues [4] was identified in the annotation (issue type)
or what issue caused the participant’s confusion with issue types including: incom-
pleteness, fragmentation, incorrectness, poor code example, and ambiguity. Two of
the authors independently coded the annotations and reached 75% agreement when
coding the issue annotations and 73% for the question annotations – remaining an-
notations were discussed until agreement was achieved.

In the annotation reading condition, we analyzed how often participants said
that an annotation was helpful or unhelpful in order to better understand what an-
notations succeeded in helping participants. We calculated average helpfulness by
how many participants said an annotation was helpful and dividing by how many
participants encountered the annotation. We ranked annotations from most helpful
to least helpful by how many participants said the annotation was helpful subtracted
by how many said it was unhelpful5

5We chose this method of ranking in order to account for the “impact” of an annotation – for ex-
ample, if only one participant encountered a specific annotation and found it helpful (100% helpful),

3.4. Lab Study 29

FIGURE 3.4: The difference between reading and each of the other two conditions is statistically signif-
icant, but the difference between control and authoring is not. The average number of steps completed
is in the center of each box.

In the control condition, we kept track of whether and how the participant chose
to relay their information to their teammates. We also referenced the auto-generated
transcripts to find and count whenever a participant stated a question.

3.4.2 Results

On average, participants in the control completed 1.5 of the 4 steps, authoring par-
ticipants completed 1.4 steps, and the reading condition completed 2.5 steps (see
Figure 3.4). Participants in the reading condition performed significantly better than
participants in the control and authoring conditions (paired T-test versus control,
p < .01, paired T-test versus authoring, p < .01). This provides evidence annotated
documentation helps developers in using API documentation.

In the control condition, 1 participant chose to take notes in a Google Doc and
1 participant made comments in their code as notes for their future teammates. 2
participants spoke aloud when they had a thought that they would want to share as
a note to their teammates, but did not actually write any notes down. The remaining
6 control participants did not take notes or verbally indicate the intent to take notes
at any point during the study. This suggests that without a mechanism for external-
izing their thoughts, these 6 participants may not have been able to actually share
what they learned and only 2 participants had any artifact to share with their future
teammates.

How Developers Annotate Documentation

The 10 participants in the annotation authoring condition created 91 annotations
across all five of the annotation types (see Figures 3.5 and 3.6). The annotations that
participants authored were, on average, relatively short in length at 9.31 words (min-
imum = 0, maximum = 34, median = 8). On average, each participant authored 9.1
annotations (median = 8, standard deviation = 4.094, minimum = 5, maximum = 18),

we did not want that to be seen as “more helpful” than another annotation that helped 5 out of the 6
people that encountered it (83.3% helpful).

30 Chapter 3. Adamite: Meta-Information as Annotations on Documentation

FIGURE 3.5: The proportions for each type of the annotations made in the authoring condition (out of
91), with the exact count for each type above the bar and the proportion in parentheses.

with the most used annotation type being the normal-type at 32 authored annota-
tions (35.1%). 2 participants in the annotation reading condition created 6 annotations
(3 normal, 2 highlights, and 1 question), resulting in 97 annotations across all con-
ditions. The rest of the analyses just look at the 91 annotations from the authoring
condition.

Considering the large amount of normal type annotations and how normal an-
notations can contain nearly any type of information, we sought to characterize the
content of these annotations. Through open coding, two coders defined 5 categories
– “note to self” in which the participant made a note about the documentation’s con-
tent that was primarily for themselves, “explanation of code” in which the partici-
pant tried to better explain what a particular code example was doing, “hypothesis”
in which the participant guessed about how some part of Piling works, “important
to task” in which the participant highlighted a particular part of the documentation
as critical for one of the steps of the task, and “other” for any annotations that did
not fit into the previous categories. With this categorization, we had 12 “note to self”
annotations, 10 “explanations of code”, 7 “hypotheses”, 2 “important to task” anno-
tations, and 1 “other” annotation. The 1 “other” annotation was an annotation with
no content that was created purely as a navigational aid. Participants commonly
used “note to self” to keep track of their information and contextualize it to their
open task, and used “hypotheses” as ephemeral thoughts about the documentation
– these activities are more directly supported in our tool, Catseye, within the context
of the code.

The “note to self” annotations typically served as reminders to the author to ex-
ternalize an important detail about the API or a code example. For example, one
participant annotated a call to document.getElementById(’demo’) with “remember
to change the ID” as a reminder to themselves, as they were in the process of adapt-
ing the example. This note could also benefit future users of the documentation as a
note that the code example will not work without some modifications.

Unexplained or poorly explained code examples are a frequent problem in doc-
umentation [4, 249] and Piling was no different, so our participants attempted to
explain some of the code examples and, sometimes, contextualize them to the goals

3.4. Lab Study 31

Documentation Issue Issue Annotations Question Annotations About
Issue

Percent Questions Answered

Incompleteness 3 6 50%

Fragmentation 4 3 33%

Incorrectness 4 2 0%

Poor Code Example 10 7 43%

Ambiguity 2 12 33%

TABLE 3.1: Counts of each issue and question annotation that identified or was caused by an issue
discussed in [249]. Note that two code examples did not work because they suffered from a fragmen-
tation issue, so they are coded both as a poor code example and a fragmentation issue. Similarly, all
fragmentation questions were caused by fragmented code examples, so they are also coded as both a
fragmentation question and code example question.

of the task. The most helpful and second most helpful annotations are both expla-
nations of code with the most helpful explaining how to use Piling’s row property
to create columns, and the second most helpful annotation explaining how the code
example for piling.arrangeBy works and how to adapt the code example to work
using a callback function – both necessary steps for completing the task. Further, in
our qualitative coding of issue and question annotations, poorly explained code ex-
amples were the most common type of identified issue, suggesting that participants
valued the ability to express lightweight thoughts about code in context.

Participants also often annotated code examples which did not work as an is-
sue type annotation, with 10 issue annotations being labeled in the closed-coding
as a “poor code example”. Poor code examples were the most frequently identified
issues (Table 3.1). These code examples typically did not work either because a vari-
able in the example was undefined and thus the code could not be just copy-pasted
(7/10) or because the documentation did not show an output of what the code ex-
ample actually did (3/10). Some of the undefined variable issues occurred because
the variable was defined in a different part of the documentation (2/7) – a documen-
tation fragmentation issue as well as a code example issue. One participant was able
to use multiple anchors to suggest where the definition for the variable should be
moved to in order to make the code example work.

Developers also had many questions that relate to documentation issues reported
by prior studies [4, 249]. Ambiguity and poor code examples were the source of
the majority of developers’ questions, which matches the findings reported in [249],
with ambiguity, in particular, standing out as a common and severe blocker for de-
velopers. Ambiguity and fragmentation issues also resulted in questions that were
difficult for annotation authors to answer, with only 33% of questions caused by am-
biguity and 33% of questions caused by fragmentation being answered. Considering
some participants were able to solve fragmentation issues using multiple anchors
with Adamite, this suggests these developers’ questions may have been answered
if they had been presented with these annotations. In fact, in the Adamite reading
condition, 2 participants had their issue of aggregateColorMap not compiling solved
by an annotation that used multiple anchors to link to the part of the documentation
that defines aggregateColorMap.

32 Chapter 3. Adamite: Meta-Information as Annotations on Documentation

Issue-type and question-type annotations accounted for roughly half of all the
authored annotations. Nearly all issue annotations succeeded in identifying at least
one of the issues identified in [249] (see Table 3.1), save for one issue annotation
that stated that a particular part of Piling is “super high maintenance for a simple
use case”, which is not an issue with the documentation, but with the library itself.
Notably, this issue annotation was the third most helpful annotation in the reading
condition with participants appreciating that it warned them about a part of the
library they were thinking of using, suggesting that issue annotations are useful
beyond identifying documentation problems.

Participants also hypothesized about parts of Piling, including how the library
worked and what various constructs were relevant to the task. One participant an-
notated a code example that used an undefined parameter and said “I think that
k is equal to the number of photos in the data set. I could be wrong though -
TBD”. Another participant was trying to determine what function to use to sort
their images and annotated piling.groupBy with the text “This might be helpful”,
but, upon finding piling.arrangeBy, annotated that method with “Actually, maybe
this”. These hypotheses along with “note to self” annotations demonstrate how an-
notating can be a lightweight technique for jotting down thoughts as a developer is
gaining familiarity with an unfamiliar library.

Considering roughly half of the authored normal annotations are primarily ben-
eficial to the original author (i.e., notes to self and hypotheses) and every participant
made a personal annotation (i.e., notes to self, hypotheses, to-do’s, and highlights),
we find evidence that annotating is an effective mechanism for externalizing infor-
mation and helpful for the author. Further, all participants revisited at least one
of their annotations at least once (min = 1, max = 36, average = 10.225 revisits per
participant), suggesting participants were able to get some utility out of their anno-
tations. We also included 6 notes to self and 3 hypotheses in the reading condition to
see whether these thoughts could benefit other developers. Notes to self, in particu-
lar, were the most revisited type of annotation by their authors, and participants, on
average, revisited these notes 1.8 more times – more than any other annotation type
or coded normal annotation types.

Some of the annotations were used in conjunction with Adamite’s other novel
features, resulting in the annotations being more useful. The most commonly revis-
ited annotation, a note to self, had 5 anchors with each anchor describing a necessary
step in order to properly instantiate the piling object. The participant pinned this
annotation such that they could reference the anchor steps in their CodeSandbox
project (which was open in a separate Chrome tab) – this annotation was also useful
in the annotation reading condition with one participant replying to thank the au-
thor. This shows that Adamite’s features not only support the creation of lightweight
notes but also allow developers to utilize their and other people’s notes in context.

The annotations that participants authored were, on average, relatively short in
length at 9.31 words (minimum = 0, maximum = 34, median = 8). The short length of

3.4. Lab Study 33

FIGURE 3.6: Which participants made what type of annotation. A1 through A10 refer to the 10 au-
thoring condition participants. R1 and R2 are the two reading condition participants who created
annotations.

annotations makes them relatively easy to author. The annotations included in the
reading study averaged 11.94 words and the 10 most helpful annotations were, on
average, 13 words long. These results suggest that short notes are able to help future
users of documentation, while not requiring a large amount of effort on the author’s
part to create. These annotation lengths are also consistent with the annotations
authored using Hypothesis in our corpus analysis, suggesting these annotations are
similar to the types of annotations authored in the wild.

In terms of task completion, participants in the annotation authoring condition
on average completed 1.4 steps out of the 4 steps required to complete the task (stan-
dard deviation = 0.69, minimum = 1, maximum = 3, median = 1) (see Figure 3.4).
There is no statistically significant difference between the control condition comple-
tion rate of 1.5 and the 1.4 in the authoring condition (two-tailed T-test, p = 0.78), sug-
gesting that annotating the documentation, while not increasing their performance,
also did not require so much overhead that participants were unable to complete
the task in the same amount of time as if they had not been annotating. Moreover,
considering how often developers’ revisited their notes, specifically their “notes to
self”, this suggests authors were able to successfully use annotations as an external-
ization of their thoughts. Chapter 4 further explores how to make annotations more
beneficial for the initial author.

How Developers Use Annotated Documentation

Participants in the reading condition read, on average, 23.7 annotations (including
revisiting annotations they had already read, with 72% of annotations read more
than once), and read, on average, 15.6 unique annotations. Participants found 45%

34 Chapter 3. Adamite: Meta-Information as Annotations on Documentation

of the annotations that they encountered helpful, and only 8% not helpful. The top-
performing 6 participants in the reading condition also reported the highest propor-
tion of helpful annotations, suggesting that their success may be attributed to their
use of the annotations.

Of the 32 annotations included in the reading condition, the most helpful type
of annotation for readers of the documentation was answered question annotations,
with, on average, 54% of participants who encountered them stating they were help-
ful. Normal-type annotations were the second-most helpful type of annotation (avg.
47% helpful) and issue type annotations helped on average 35% of the time. Some
issue type annotations were more helpful than other issue annotations including
annotations that identified poor code examples, which were helpful, on average,
45% of the time. Even though these issue annotations did not necessarily suggest
a solution, they did work in confirming the participant’s suspicions that the docu-
mentation itself was incorrect and not the participant’s implementation. Sometimes,
participants found useful annotations through search – participants searched a total
of 78 times and 11 of these searches returned an annotation that the user immedi-
ately found useful.

The most helpful annotation was anchored to the text “columns” and simply
states “Use this to create rows” — a short, 5 word annotation that explains how this
property can achieve an effect required by the second step of the task that is not
immediately clear when reading the documentation. The second most helpful anno-
tation also succeeded in elucidating how to use part of the API that is relevant to the
task through using multiple anchors and clarifying a code example for arrangeBy –
a method necessary for the third step. In the reading condition, participants were
more successful in completing these two challenging steps, with 9 participants able
to complete step 2 and 4 participants able to complete step 3. This increase in perfor-
mance suggests that participants were able to utilize what the annotation authoring
condition learned in order to more effectively complete their task.

Annotations that were not as immediately relevant to the task could also be help-
ful. Two issue type annotations were the third and fourth most helpful annotations,
each warning participants about unhelpful and incorrect parts of the documenta-
tion. For example, the fourth most helpful annotation, which helped 4 participants,
stated that a code example in the documentation throws an error that a variable is
not declared — participants found this annotation useful as it deterred them from
using that code example or, if they did use it, reassured them that they were not
doing something wrong, since another user had the same problem.

Conversely, the least useful annotations were the ones that lacked enough context
to be reusable. For example, an unhelpful annotation was an annotation anchored
to the text “columns 10”, stating that the default value of column is 10, which is
redundant with the text of the anchor. The original author annotated this as the rea-
son their 4 images showed up in a single row since the column parameter needs to
change to make 2 rows, however, the annotation is missing this full context. Future

3.5. Limitations 35

annotation systems designed to help programmers should explore automatically in-
ferring additional context to make the annotation more comprehensible to later users
— if Adamite were to be integrated with the developer’s integrated development
environment (IDE), we may be able to capture the code and its output before and
after the user created the annotation to better explain why they made the annotation
and what they were trying to achieve. Adamite and Catseye (Chapter 4) share the
same database, so supporting synchronicity between the two applications is tech-
nically possible – ultimately, this path was not fully explored due to a lack of clear
design vision in terms of how a between-application, contextually-aware annotation
platform could support developer sensemaking. Meta-Manager (Chapter 7) also ex-
plores bridging together browser and IDE activities in order to support developer
question-asking and answering.

Participants especially appreciated the normal type annotations that were ex-
planations of code, with participants finding them helpful 63% of the time. Code
explanations typically elucidated what a code example was illustrating or explained
how to adapt a particular code example for the purposes of the task. “Notes to self”
were also surprisingly useful, with participants finding them helpful 53% of the time
– given that the notes to self typically represented a thought or reminder the devel-
oper had about the documentation while completing the task, these results suggest
that the participants in the reading study had similar thoughts about the documen-
tation. Conversely, hypotheses were not very helpful, with only 16% of participants
finding them helpful – given the uncertainty of these annotations, participants may
have found them less trustworthy. These results suggest that explanations of code
and developers’ personal notes can be useful if they are framed in a knowledgeable
fashion, while hypotheses are more useful for the original author.

3.5 Limitations

Given Piling’s complex documentation, Adamite may not be as helpful when the
documentation is simpler or clearer, so the study cannot necessarily be said to apply
to those situations. Our lab study was also constrained to a single forty-five minute
session, so it is unclear how developers’ API learning and annotation authoring and
reading behavior would change over a longer period of time. Piling also has a small
user-base, so we have less evidence that Adamite would be useful for APIs with
better documentation or APIs with a large user-base that can provide useful crowd-
sourced information on Stack Overflow or mailing lists. Future work should see how
developers use Adamite in the wild with more popular APIs over a longer period of
time.

Considering we selected the annotations to be included in the reading condition,
there is an additional limitation that this curating process would not happen in the
wild, and, since the last annotation added was created by a researcher, we cannot
say that every annotation was participant-authored. The most common reason for

36 Chapter 3. Adamite: Meta-Information as Annotations on Documentation

removing an annotation was due to the annotation’s content being redundant with
another annotation which would be less likely to occur in the real world where users
can see other users annotations and will most likely be performing different tasks.
While annotations unrelated to the user’s task may be distracting, some annotations,
such as issue annotations, may be useful to any developer using the construct(s) the
annotation references. Further, Adamite supports tagging and filtering which could
be used to filter out annotations that are unrelated to what the user is working on.
Annotations could also be curated in order to ensure higher quality annotations are
more commonly seen using crowd-sourcing methods (e.g., supporting voting and
editing other users’ contents [6]) which could be added to Adamite.

Adamite as a tool is also limited by its inability to work on dynamic web pages
such as Google Docs since dynamic web pages do not have stable anchor points for
our highlighting algorithm and the content on these web pages often changes, caus-
ing the annotation to lose its original context. Considering developer documentation
is relatively static, Adamite works well in this situation, but we do not claim that
Adamite will work on more volatile pages. Adamite also does not work on PDFs,
despite some documentation existing in the form of a PDF. API documentation is a
good use case for Adamite, though, since there are many well-known issues with
documentation that annotations can address and API documentation is commonly
presented on a website.

3.6 Discussion

Our results suggest that annotations are useful for documentation readers in over-
coming some of the known barriers of documentation and that the act of annotat-
ing when learning a new API can help developers keep track of their thoughts and
open questions. Creating annotations was also useful to the author as a form of self-
explanation, which has been shown to be useful for learning in prior studies [32, 40],
and these self-explanations, or “notes to self”, were useful to others. The novel fea-
tures of Adamite, especially types, multiple anchors and pinning, helped annotation
authors better structure and contextualize their information and helped annotation
readers find relevant information.

Participants particularly enjoyed that the annotations had types, and also envi-
sioned future enhancements. 7 participants in the authoring condition noted that
they enjoyed the question-type annotations, with 2 specifically mentioning the two
built-in question menu items, suggesting that assisting in annotation authoring may
be a fruitful avenue for future annotation systems. One participant made an issue
type annotation, but wanted the issue to only be shared with documentation writers,
while 2 other annotators wanted the “issue” type annotation to be less “confronta-
tional” and instead frame the annotation as a “suggestion” to the documentation
maintainers.

3.6. Discussion 37

Having types for annotations also resulted in two completely separate classes of
annotations that users made. As demonstrated in our qualitative coding, the kinds
of information developers noted in their normal annotations (i.e., notes to self, im-
portant to task, hypotheses, and explanations of code) are very different from the
information that developers noted in their issue and question annotations, which
were primarily documentation-focused. This suggests that annotation typing is an
effective way to elicit information through annotations that may not otherwise be
noted.

Reflecting upon Adamite, some of the most significant lessons-learned and open
challenges from this work that influenced future work are as follows:

• Context is key. One may ask “why annotations and why developer documen-
tation?” – the two research areas feel disparate, yet annotations provide a key
function that makes them particularly well-suited to addressing documenta-
tion barriers, and that is the context that is inherent to the annotation anchoring
point. Consider some of the previously-discussed helpful annotations – they
were only helpful because their terse message was bound to a rich information
context, that being the documentation’s text. Documentation issues often stem
from a lack of context (e.g., “poor code examples” are often missing context
about when to use the code, what the code means, etc.) so providing a vehicle
by which additional context can be built upon by users of the documentation
is a successful approach. Further, annotations often lost their utility when con-
text was not conveyed well, usually due to poor anchor location (e.g., an earlier
example about the annotation’s text being redundant with the annotated text).
In the later works discussed in this dissertation, we further explore the power
of providing tight couplings between user-generated or user-derived data and
challenging source materials such as code and documentation.

The tight coupling and its ability to convey context can largely be attributed to
the powerful properties of anchoring. We additionally gave design considera-
tion for the annotation content and audience, given the more social, team-based
context of the tool and study. This led us to design features such as multi-
anchoring for conveying context across time and audience through coupling
annotation content with different parts of the source document, and structur-
ing content with different types to implicitly communicate with later develop-
ers about the original intent behind an annotation.

• What is the incentive to annotate? When beginning this work, we were moti-
vated by the knowledge that developers sometimes take notes when working
on code [157, 159], including when understanding documentation [151]. How-
ever, the behavior of the control participants, I believe, presents, perhaps, a
more realistic look at how this behavior manifests in the “real world”. The
majority of control participants did not take notes or even verbally indicate

38 Chapter 3. Adamite: Meta-Information as Annotations on Documentation

at what point they would want to keep track of some information. Devel-
oping good information tracking practices is difficult for even the most orga-
nized and disciplined engineer, so the benefits of using a tool such as Adamite
must be high enough that it is worth pausing ones work to annotate. With
a system like Adamite that has an implicit crowd-sourcing model, getting
enough upfront users to develop a community that can be self-sustaining is
a known challenge [6]. Our later work explored this question from multiple
angles, including moving working contexts and designing additional tooling
to more directly benefit the initial annotation author (Chapter 4), and eschew-
ing direct developer note authoring all-together in favor of capturing already-
authored information that may be useful, including web browser and code
editing events (Chapter 7) and log statements and values (Chapter 8).

In the creation and evaluation of Adamite, we sought to explore to what extent
annotations may help annotation authors and readers in overcoming previously-
reported shortcomings of documentation. Through this exploration, we have evi-
dence that developers are able to identify documentation issues using annotations
and are able to answer some of their documentation questions. Specifically, our par-
ticipants were able to identify “poor code examples”, “incompleteness” and “ambi-
guity” issues, some of the largest blockers when using documentation [249]. Other
developers can make use of these answered questions and issue annotations, with
answered questions as the most helpful annotation type and explained code exam-
ples also helping annotation readers. However, annotations cannot solve every doc-
umentation issue. If the API and its documentation are updated, the annotations
may go out of date, at which point they may be more harmful than helpful. While
our algorithm attempts to reattach the annotation to its anchor point, the annota-
tion content will not change to reflect that reattachment, at which point the content
may be incorrect. This tension when updating content between developer-authored
meta-information and the original source it is connected to is further explored with
our tools Catseye and Sodalite, along with our design exploration of curating anno-
tations through re-anchoring in Chapter 5.

39

Chapter 4

Catseye: Meta-Information for
Sensemaking About Code

This chapter is adapted from my paper:

[107] Amber Horvath, Brad A. Myers, Andrew Macvean, and Imtiaz Rahman.
2022. “Using Annotations for Sensemaking About Code”. In The 35th Annual
ACM Symposium on User Interface Software and Technology (UIST ’22), October
29-November 2, 2022, Bend, OR, USA. ACM, New York, NY, USA, 16 pages.

4.1 Overview

With our previous tool, Adamite, we found evidence that developer meta-information,
in the form of annotations, was useful in overcoming known barriers in documenta-
tion usage. In particular, later users of the documentation experienced a significant
increase in task completion. However, the initial authors did not experience a sig-
nificant effect. Despite this, we had evidence that developers did appreciate the
ability to annotate programming-related documents with their thoughts, questions,
and hypotheses that they wanted to keep track of. With this in mind, we wanted to
explore how to make annotating more beneficial for the initial user.

One context in which keeping track of information is possibly even more impor-
tant than in the context of using developer documentation is when actively program-
ming. Prior work has discussed some of the challenges developers must face when
making sense of code. A developer must maintain their own task context [170],
while also keeping track of the various questions [226] and hypotheses [161] they
have about the code, the answers they find to these questions [138, 226], their code
locations of interest (commonly referred to as the “working set” [27, 45, 126, 274]),
the different versions of the code they try [119, 269], and how those various versions
produce differing outputs [119]. All of these information tasks can become even
more difficult to manage when a developer is interrupted [156, 189, 191]. Strategies
for keeping track of these various forms of information are rarely successful and are

40 Chapter 4. Catseye: Meta-Information for Sensemaking About Code

often siloed into different tools or approaches, given the different types of informa-
tion to track.

In this chapter, we explore the concept of generalizing annotating for capturing
different forms of meta-information using a singular, unified mechanism in the IDE
with our tool Catseye. Catseye adopts and extends many of the features introduced
in Adamite, such as multiple anchors and pinning, while adding in support for
programming-specific information tracking, including lightweight versioning and
output capturing. Catseye has advantages over other forms of information track-
ing commonly employed by developers, such as code comments for tracking open
tasks [237], by both allowing for a higher level of specificity through anchoring the
meta-information to the relevant code yet abstracting that information away from
the source code, such that it does not clutter the source with potentially erroneous
information. Our lab study suggests that Catseye did assist in information track-
ing, with participants using Catseye performing better on a debugging task when
compared to participants using their own information tracking strategies.

FIGURE 4.1: Catseye as it appears in Visual Studio Code. (1) shows how the annotation appears in the
editor – the code is highlighted with a light gray box and, when hovered over, the annotation content
appears in the pop-up with any other documentation. Clicking on the “Show Annotation” button
opens and brings into focus the Catseye pane if it is not already visible, then scrolls to the annotation.
(2) shows the annotation location(s) in the scroll bar gutter in a light green. (3) is a search bar for
searching across the user’s annotations. (4) is the Catseye pane – the pane is segmented into sections
corresponding to the annotations’ locations in the file system, with the “Current File” section currently
open. (5) is an annotation – the top of the annotation shows the author and creation time information
on the left, and buttons for various actions. (6) shows the two code anchors for the annotation. (7)
is the content the user added as an annotation to the code snippets. (8) is a snapshot of the code at a
previous version with a comment added by the author about this version of the code. (9) is a reply to
the original annotation.

4.2. Catseye 41

4.2 Catseye

4.2.1 Overview of Catseye

We developed Catseye– an extension for the Visual Studio Code editor [166] – that
allows developers to keep track of their tasks, open questions and hypotheses, an-
swers to these questions, and more in the form of annotations attached to one or
more snippets of code (see Figure 4.1)1. We chose to adopt some of the features of
the Adamite system [104] for Catseye, given the similar goals of the systems with
Adamite based around supporting developers’ information tracking on the web.
Adamite showed the benefits of multiple anchors and pinning, and we expected
that these features would help with code comprehension issues, such as managing
a working set. We also introduced code-specific information tracking capabilities,
including lightweight versioning and output capture.

To create an annotation, a developer selects a snippet of code in the editor and,
using a keyboard shortcut, the context menu, or Visual Studio Code’s Command
Palette, indicates that they want to create an annotation. The Catseye pane will up-
date with a preview of the annotation, where the developer can add text and choose
whether or not to pin the annotation. Once the annotation has been created, it will
appear in the Catseye pane and the editor will update with a light gray box around
the annotated code at the anchor point (see Figure 4.1-1). With an annotation, a de-
veloper can click on it to jump to the anchor point in the code (and vice versa), build
upon it through adding additional code snippets as “anchors”, capture versions of
the code and the code output, “pin” the annotation for easier navigation, “reply” to
the annotation with more information, search for the annotation, export the annota-
tion as a code comment, and edit and/or delete the annotation.

Given our high-level goal of creating an annotation system where annotations
serve as ephemeral notes when making sense of code, we explicitly designed an-
notations to function similarly to Google Doc comments or Microsoft Word com-
ments. Annotation anchors in Catseye move around with the code as the code and
its location in the editor change over time, and the annotations appear in their own
designated area that is detached from the developer’s editor. We chose this design
metaphor to emphasize the point that annotations are not code comments – they are
separate, meta-level notes that are attached to but abstracted from the developer’s
working context. Annotation anchors update whenever the developer edits their
code, and the copy of the code at the anchor that is shown in the annotation (Figure
4.1-6) is updated whenever the developer saves their code.

Annotation code anchors can also be used as navigational aids. The developer
can click on the code or the file path in the annotation (Figure 4.1-6 and Figure 4.2-1)
which will open that file in a new tab if it is not already open, bring that file’s tab to

1Note that this figure and remaining figures in this chapter show the version of Catseye that existed
at the time of publication and can be considered “version 1” – “version 2”, which is the current version,
differs slightly in terms of its user interface and can be seen in Chapter 5.

42 Chapter 4. Catseye: Meta-Information for Sensemaking About Code

FIGURE 4.2: An annotation made by a participant in our study. (1), (2), and (3) show the 3 different
code anchors the participant created across multiple files, with the first anchor (“gameloader.js”) as
the site of their question, and the remaining two anchors and reply (4) answering their question. The
annotation was pinned.

the front if it was not already, and scroll to the code’s location in the file. Additional
navigational affordances are provided for pinned annotations – a developer can use
a keyboard shortcut to cycle through each pinned annotation’s location to help with
navigating through important code patches. Figure 4.2 shows a pinned annotation
one participant in the user study created to help with managing their working set.

Given the mutable nature of code, keeping annotations attached introduced some
design challenges unique to Catseye in comparison to other annotation systems de-
signed for more static information. Since code is expected to change, retaining the
original anchor point becomes more important as the annotation’s content is more
likely to become out-of-date – we choose to store a copy of the user’s original anchor
point for reference as the code changes. The developer can also deliberately save a
version of the code by clicking the snapshot button on the code anchor box (see Fig-
ure 4.1-6). Once the snapshot has been created, the developer can edit the snapshot
to add their own meta-information, such as what output that version of the code
produced (Figure 4.1-8). Notably, these design choices were reasonable for a first-
pass prototype system, but the tension between annotation and anchor contents is

4.2. Catseye 43

focused on more in Chapter 5.
Another design challenge is how to handle the case where the user deletes the

code that an annotation is attached to – should the annotation be removed as well
or should it persist? Notably, this was not a challenge we had to consider with
Adamite, given that an annotation author in most cases cannot directly edit the web
page and, thereby, delete their annotation’s anchor. Different annotation systems
do different things in the case of anchor deletion – Overleaf comments will persist
when the anchor is deleted, with a line showing where the text used to be, while
Google Doc comments will be removed if their anchor is removed. We chose to
follow Google Doc’s design choice, with the rationale that, if the user wants the
annotation content to persist, they can attach an additional anchor to the annotation
or export the annotation as a code comment. Again, this design challenge is more
directly discussed and approached in Chapter 5.

A related issue is what to do with annotations on code which is copy-and-pasted.
Like with deleting, different annotation systems do different things. We decided to
not copy the annotation with the code with the justification that we want to reduce
as much potential annotation clutter as possible (thus we choose to never create an
annotation without the user’s explicit request). These design choices also turned out
to be the most useful way for these features to work in my personal usage of the tool
(see Section 4.6). Notably, handling copy-pasted code is addressed more directly
with our later tool, Meta-Manager, where the relationship between the copied code
and pasted code is retained and tracked but in service of supporting slightly different
design goals.

Related to questions of what to do with copy-paste, we also had to consider what
to do when the developer uses Visual Studio Code’s undo or redo functions. Cur-
rently, annotation creation is not put on the undo stack, thus a user cannot undo
creating an annotation. Annotations may also be anchored to code that is subse-
quently undone, thus removed from the code base – this works the same as deleting
the code, in that the annotation is removed. However, Catseye currently does not
handle redo, thus it will not detect if some removed code has returned due to a redo
and re-attach the annotation.

Oftentimes, when a developer wants to keep track of some information, they will
want to resolve or build upon the information they initially felt was worth jotting
down. Catseye follows a similar model to other annotation systems where “follow-
ing up” on the content of a note is kept very general, so the developer can either edit
their original note, or reply to it with their additional thoughts.

4.2.2 Background and Design Goals

In creating Catseye for Visual Studio Code, we were particularly interested in help-
ing developers capture and keep-track of their ephemeral thoughts, questions, con-
cerns, and open action items related to their code, since this is the least well ad-
dressed aspect of previous tools. We envision that annotating will help with the

44 Chapter 4. Catseye: Meta-Information for Sensemaking About Code

following use cases:

• Keeping track of developers’ questions and hypotheses about code. Sillito et
al. [226] found that, during software maintenance tasks, developers reported
over 40 different kinds of questions they had about the code and that there is
little tooling support for finding answers to those questions. They also found
that there is limited tooling support for helping developers keep track of these
questions as they come to an answer. Given that Catseye ’s annotations retain
the original context of the code, and allow for composition of multiple code
snippets through multiple-anchoring, we hypothesize that annotations may
help with keeping track of these complex questions and the eventual answer a
developer finds.

• Keeping track of facts developers learn about code. During any task that re-
quires comprehending code, developers will naturally collect a body of knowl-
edge about the code base [138]. Only some of these facts are appropriate as
documentation, either because the behavior of the code is expected to change
(such as during debugging) or because there is uncertainty about the veracity
of the fact. We hypothesize that Catseye and its annotations will help with
externalizing these thoughts while not requiring laborious clean up, since the
source code is unaffected.

• Keeping track of developers’ open to-do items. In trying to complete a com-
plex programming task, a developer needs to keep track of a multitude of both
high level goals and lower-level implementation steps in order to achieve that
goal which the developer may forget, especially when interrupted [189]. De-
velopers can use annotations to mark the code to change with the details of
their “todo” item, compose snippets that are related to the change using mul-
tiple anchors, and can pin and un-pin the annotation as a way of marking
whether or not the task still needs to be addressed.

• Helping developers navigate their code. An oft reported difficulty in pro-
gramming is navigating the code base, especially when it is large. Develop-
ers typically discover a “working set” of task-relevant code fragments [27, 45,
126], then spend time navigating among these fragments as they implement
their change. This navigation takes up a large amount of time, especially since
these fragments can be difficult to return to [126]. We expect that clustering an-
notation anchors using multiple anchors, pinning these annotations for easier
tracking, and using the code anchors as quick links will make this navigation
easier.

• Keeping track of localized changes. When a developer is implementing a
change, they often try multiple versions of the code in order to investigate the
differences in output and ensure that the change works. These changes can be
relatively small (i.e., less than 5 lines of code), may not be tracked in version

4.2. Catseye 45

control [119], and switching between these versions can be difficult if the prior
versions are not retained, especially since they may be inaccessible through
undo commands [269]. Catseye allows developers to snapshot their code for
versioning, such that developers can keep track of the different changes they
try and can optionally associate these versions with the output they produced.

• Keeping track of changing system output. While testing changes, developers
have reported a need for keeping track of what version of their code produced
what output [119] and have used strategies such as copy-pasting the output
into text files. We provide annotations as a place to store these outputs – de-
velopers can either reply to their annotation with the output values or edit
their snapshots with the output which comes from that version of the code,
thereby leveraging the context of the code.

Notably, the use cases described above are designed for the benefit of the original
author of the annotation. We chose to focus on supporting the initial annotation author
given the goal of supporting a developer’s tracking of information, which is largely
localized to a single author and their implementation session(s). Whether or not
code annotations can be helpful across time or between developers is discussed and
explored more in Chapter 5.

4.2.3 Implementation Notes

Catseye is implemented as a Visual Studio Code extension and is written in Type-
Script [165] with the implementation using React for the user interface [69] and
Google Firestore [61] for storing annotations on the database, along with authen-
ticating the user.

One particularly important aspect of Catseye is managing the code anchors as
the user actively edits the code. Annotation anchors are kept up-to-date using Vi-
sual Studio Code’s document change event handler. Whenever the user modifies
a file that contains an annotation, the Visual Studio Code API generates a change
event object that we interpret. For simple cases, such as adding a new line at the top
of the file, updating the anchors is trivial, but, in the case of more complex changes,
such as pulling in a new version of code from GitHub or formatting a code file using
a package such as Prettier.js [203], updating the annotation anchor becomes com-
plex. The Visual Studio Code API treats these batch changes as many small edits
applied in rapid succession. These rapid, successive edits leads to compounding
and cascading errors in terms of the computations used to evaluate an annotation’s
anchor point. If this occurs, we detect the anchor as invalid and delete the anno-
tation2. Given that tracking source locations has been a long-standing challenge in
software engineering [208], we explore mechanisms for better handling re-attaching
annotations in Chapter 5. Additionally, Sodalite expands upon the code anchoring

2Note that this was never intended to be a permanent design decision, as we knew we were going
to look into more intelligently re-anchoring annotations, as discussed in Chapter 5.

46 Chapter 4. Catseye: Meta-Information for Sensemaking About Code

functionality thru introducing new types of code anchors that are designed to be
more flexible, such that un-anchoring is less common (see Chapter 6).

4.3 Lab Study

In order to understand how developers keep track of information while making
sense of code when using their own strategies and when using annotations, we ran
a small lab study. Participants in the experimental condition authored annotations
while using Catseye to help them keep track of information, while participants in
the control condition used whatever strategies they normally would employ. The lab
study consisted of a training task, then a debugging task, and ended with a survey
to assess the participants backgrounds, their experience with Catseye if in the ex-
perimental condition, and their experience completing the task. We chose to use a
between-subjects design as opposed to a within-subjects design due to the nature of
the task. The study took around 90 minutes, so adding another training session and
45 minute task would make the study too long. Further, as discussed in [128], since
these are problem-solving tasks that you can only do once, creating 2 tasks which
are independent but of equal difficulty is challenging. The full set of replication and
study materials can be found in Appendix D.

4.3.1 Method

Training Task

Both conditions included a training task using a repository of website templates3 to
either familiarize the participants with Catseye (experimental condition) or to show-
case how the participants currently keep track of information when programming
(control condition). Participants in the Catseye condition learned how to create and
edit an annotation, pin and reply to an annotation, navigate and version their code
using annotations, and collect system output, with all functionalities contextualized
to how they may be useful for keeping track of different kinds of information. Par-
ticipants in the control condition were asked to describe how they currently keep
track of the different types of information we expect Catseye to support. In this way,
we tried to make sure that both groups were primed about the kinds of activities
that Catseye is designed to support.

Main Task

For the main task, participants were instructed to understand and attempt to debug
a website. Participants were told to imagine that they were a new developer on a
team and that they were tasked with understanding and debugging some code. For
the first 15 minutes, the participants were not allowed to edit the pre-existing code

3https://github.com/ShauryaBhandari/Website-Templates

https://github.com/ShauryaBhandari/Website-Templates

4.3. Lab Study 47

Game Bug Minimal Solution

Both Unable to Play Games Independently Change one of the event listeners to a different key (1 value change)

Snake Screen Does Not Refresh Adapt Tetris’s screen clearing function to Snake (10 line change)

Snake Snake is Too Fast Adapt Tetris’s timing function to Snake (10 line change)

Snake Snake is Drawn Incorrectly Change the constant value for the snake segment length (1 value change)

Snake Food Collision Check is Incorrect Change the ORs in the boolean to ANDs (2 value change)

Tetris Blocks Falls in Last Key Press Direction Set current direction of block fall to “down” on each game loop (3 value
change)

Tetris Rotating Square Causes Square to Move
Upwards

Add conditional to prevent square from being rotated (3 line change)

Tetris Game Does Not End Change conditional to whether the stack of blocks is at the top of the screen (1
value change)

Tetris Game Calculates Score Incorrectly Increment user’s number of cleared rows instead of setting to last clear row
value (1 value change)

TABLE 4.1: The bugs present in the two games. “Value” refers to a construct in the program, such as
an operator, boolean, or variable.

(but they could add comments and print statements) as part of the scenario in which
they are new to a team and should spend time familiarizing themselves with the
code prior to contributing changes. This also allowed us to investigate differences in
the kinds of annotations made while understanding versus debugging and editing.
After the 15 minutes of understanding and testing the code, participants had 30
minutes to attempt to use what they learned to resolve issues they had discovered.

The website included buggy implementations of Snake and Tetris. Each game
had 4 bugs, with an additional bug that affected both games, totalling 9 bugs (see
Table 4.1). We chose these two games since they are both relatively well-known, are
event-based which makes understanding their structure less straightforward, and
have clear requirements such that testing the games takes less time in comparison to
actually debugging their logic. Similar tasks have been used in related studies [189,
191].

The code was specifically designed to be confusing in order to make keeping
track of information particularly important (see Table 4.2). Given prior literature
around what makes code confusing [226], we purposefully included bad code smells
such as poorly-named variables, global variables, lack of organization amongst meth-
ods, and no documentation. Since participants only had 45 minutes for the task,
we wanted to necessitate keeping track of information while also keeping the task
semi-realistic through using known issues when comprehending unfamiliar code.
To further validate the realism of the code, we included two questions in our post-
task survey that asked participants how similar the code they saw in the study is
to code they have encountered during their time as developers and how frequently
they have encountered such code. Participants reported the code is similar to code
they have encountered before4 but that they (fortunately) do not encounter code like
this very frequently5.

4average = 3.4 out of 5, using a 1-to-5-point Likert scale from very dissimilar to very similar
5average = 2.6 out of 5, using a 1-to-5-point Likert scale from never to very frequently

48 Chapter 4. Catseye: Meta-Information for Sensemaking About Code

What Information to Track What Aspect of the Task Explanation

Questions, Hypotheses, and
Answers

Debugging task Debugging naturally leads to many questions and hypotheses about
the program behavior but subsequent answers may be lost or forgotten
[226]

Facts Poorly-written and documented
code

Developers are tasked with learning what the code constructs are and
how they are used

Open Tasks 15-30 time split Allow developers to discover many bugs, then have them decide which
ones to focus on and how to fix them

Navigation Poorly-organized code Constructs, including methods and classes, are spread across multiple
files including some files the participant cannot edit

Localized Changes and Output Arcade Games By having two arcade games, participants are tasked with making
changes and seeing how that affects each game and how that affects
each game’s output

TABLE 4.2: How the study task encapsulates the types of information Catseye supports.

4.3.2 Participants

We recruited 13 participants (5 women and 8 men) using study recruitment channels
at our institution, and advertisements on social media. Participants were randomly
assigned between the control and experimental conditions, with 7 participants in
the experimental condition and 6 in the control condition – participants in the ex-
perimental condition are referred to as “P1” through ”P7” and control participants
“C1” through “C6”.

All of the participants were required to have some amount of experience using
JavaScript, to have a GitHub account, and to regularly use Visual Studio Code. The
participants’ professions included graduate students in computer science-related
fields, undergraduate students in computer science, and professional programmers.
On average, participants had 10.2 years of programming experience, 5.2 years of pro-
fessional programming experience, and rated their familiarity with JavaScript at 4.5
out of 7. Participants in the control condition had more experience and more profes-
sional experience, on average, than experimental participants, but not significantly
more.

4.3.3 Analysis

Across both conditions, we objectively coded what bugs the participant succeeded in
fixing (see Table 4.1). In the experimental condition, we analyzed the video record-
ings and log data to count how many annotations each participant authored and
how often they interacted with their annotations to assess the utility of the annota-
tions for keeping track of information. We additionally logged whether or not any
annotations were made in the first 15 minutes and, for annotations created during
the debugging part of the task, what bug the participant was attempting to solve at
the time of creation. We analyzed the videos in the control condition to log the same
types of interactions including the artifacts developers made in that condition, such
as code comments and external notes.

We additionally labeled the annotations and control condition notes with the
type of information it was being used to help keep track of. We objectively coded
this conservatively based off the content. If an annotation’s or artifact’s content was

4.4. Results 49

phrased as a question or had a question mark, it was coded as a question; if the
content had words such as “might” or “seems like”, it was coded as a hypothesis;
if the content was phrased as an objective such as “change this”, it was coded as a
task; and if the content was stated as a fact (e.g., ”game-1.js is snake”) it was coded
as a fact (even if the fact was incorrect). The same process was used for annotation
replies.

We counted items as used for “versioning” when they either contained a snap-
shot (annotation) or were used to mark a change they made to the code base (anno-
tation or control artifact). For navigation, we counted an annotation that is pinned
and/or had multiple anchors as used for navigation.6 We counted an annotation or
control artifact as being used for output if the participant used it to store or comment
upon the game output. If the content of an annotation or artifact did not fit into any
of these categories, it was marked as “Other”. For replies, we also labeled whether
or not a reply served as an answer to their question annotation – a reply was consid-
ered an “answer” if its content was a direct response to the question’s content that
supported or refuted it.

4.4 Results

Participants in the experimental condition fixed, on average, 1.85 bugs (min = 0,
max = 4), while participants in the control condition fixed 0.67 bugs (min = 0, max =
1), a significant difference (two-tailed T-test, p = .04). To further explore these results,
we investigate what types of information participants chose to keep track of through
annotations versus what information control participants used their artifacts to keep
track of, how participants used their information when completing the debugging
tasks, and how participants performed on the debugging task.

4.4.1 What Information Do Developers Keep Track of with Annotations
and Artifacts?

Experimental condition participants created 84 annotations, with each of these par-
ticipants creating, on average, 12 annotations (min = 6, max = 21, median = 10, std.
dev. = 5.446). 44 of the annotations were made in the first 15 minutes (a rate of
2̃.93 annotations per minute) and 40 were made in the last 30 minutes (a decreased
rate, at about 1.33 annotations per minute). This slight drop-off in annotating is not
particularly surprising, given that the types of activities developers were perform-
ing changed as they moved from understanding code to more actively writing and
fixing code. The size of the annotations averaged 12.2 words (min = 1, max = 45,
median = 12.5) and they were attached to code averaging 29.3 characters. Each an-
chor was, on average, 1.59 lines long, with the majority of annotations attached to
one line or less of code (71/84).

6Since multiple anchors and pinning are unrelated to the text content of an annotation, this means
an annotation could be marked as both “navigation” and, for example, “fact”.

50 Chapter 4. Catseye: Meta-Information for Sensemaking About Code

FIGURE 4.3: The average number of annotations and artifacts participants created during the study.

Across those 84 annotations, developers had a variety of types of information
they chose to keep track of through annotations (see Figure 4.3). The most com-
mon usage for an annotation was to keep track of open questions developers had
with 28 out of the 84 annotations being questions (33.3%). 16 of these questions
were made during the first 15 minutes, while the remaining 12 were created in the
last 30 minutes. 6 out of those 28 questions were definitively answered, while 2
had follow-up hypotheses given program output behavior, and 1 had a follow-up
question associated with the original question, resulting in 9 out of the 28 questions
being followed-up on in some way. Given the complexity of the task, the amount
of answered questions is not particularly surprising, but the fact that participants
followed-up on their questions at all provides support for the argument that anno-
tations can serve as dedicated spaces for these questions. In contrast, as discussed
below, only 1 of the control condition’s 17 questions were followed-up on or an-
swered.

The second most common type of information experimental condition partici-
pants kept track of in their annotations were facts they discovered about the code,
with facts comprising 27 out of the 84 annotations (32.3%). 23 of these 27 facts clar-
ified information that was explicitly designed to be confusing. For example, P1 an-
notated const c = document.getElementById(’t’) with “this is the canvas of the
tetris game”. 18 of these 27 annotations were made in the first 15 minutes, when
participants were reading through and understanding the code.

Experimental condition participants also utilized annotations to keep track of
their open tasks (21.4% of their annotations) and to navigate the code (17.9% of their
annotations). These annotations typically served as reminders to the participant
about places in the code base they suspected were related to the bugs they identified

4.4. Results 51

in the code. The majority of task annotations were made during the 30 minute de-
bugging phase (12/18) suggesting that there was more of a need for keeping track
of their areas of interest in the code once they were developing, as opposed to when
they were trying to understand the logic.

Experimental condition participants did not use their annotations for keeping
track of their code versions, with no participants using the snapshot feature. Par-
ticipants did create annotations to comment on parts of the code they added or
modified, with 6 annotations made on the participant’s own code that they added.
Considering that participants, in general, did not edit the code very much, since the
bugs did not require large modifications to fix, there may have been less of a need
to keep track of small localized changes. Further, the code that participants chose to
annotate was usually code that the participants did not edit, with only 12 of the an-
notations’ corresponding code being edited. 3 annotations were used to keep track
of output – the small number of output annotations may also be due to the minimal
amounts of changes participants made to the code. Further, since the program was
a computer game, much of the output changes were graphical which is not output
that Catseye can capture currently.

In the control condition, the participants created a total of 100 different artifacts,
averaging 16.67 artifacts per participant (min = 2, max = 27, median = 15, std. dev.
= 9.771) – which is slightly more artifacts per participant than in the experimental
condition, but the difference is not statistically significant (p = .76, T-test). This may
partially be due to the fact that control participants were primed to think about and
show how they keep track of information. Further, all of the control participants had
some note-taking strategy that they described using in their daily work.

Their artifacts included 78 code comments, 14 external notes (with 5 of the notes
being created on a tablet computer, 1 being created in a Notepad document, and the
remaining 8 created using pen and paper), and 8 Git commit message7. The artifacts
averaged 5.95 words (min = 1, max = 22) – notably shorter than the annotations,
which averaged 12.2 words per annotation.

The information that control participants chose to keep track of through artifacts
differs from the information that was annotated (see Figure 4.3). While, in both con-
ditions, facts, questions, and open tasks were the three most commonly kept track of
information types, participants in the control condition kept track of facts the most,
while participants in the experimental condition kept track of questions most of-
ten. Participants in the control condition also favored “task” artifacts more so than
experimental condition participants, with most in the form of “TODO” code com-
ments (66.6%) consistent with prior work [237]. Only one control participant actively
attempted to keep track of different versions of their code, and none of the control
participants kept track of the output of their code or used any specific mechanisms
to help navigate their code, aside from traditional code search (which participants
in the experimental condition also used). These results suggest that annotations can

7All of the Git commit messages were created by one participant.

52 Chapter 4. Catseye: Meta-Information for Sensemaking About Code

promote more entering of questions and answers in comparison to traditional notes
and annotations can keep track of other types of information that may otherwise not
be captured.

4.4.2 How Do Developers Use Their Annotations and Artifacts?

We quantify usage of annotations or artifacts by counting whenever a user interacted
with their annotation or artifact in some way. On average, experimental participants
revisited 5.71 unique annotations, and revisited their annotations 11.14 times over
the course of the study. In contrast, the control condition, on average, revisited 3.5
artifacts a total of 4.67 times suggesting that the annotations were more successful
in encouraging participants to follow-up on their information. One of the two top
participants, both of whom fixed 4 bugs, also created the most annotations (21) and
revisited them the most, revisiting 14 annotations 32 times. This suggests that anno-
tation usage may have contributed to his success.

Experimental participants often revisited their annotations to add replies to their
annotations, with participants creating 16 replies and 5 out of 7 participants creating
at least 1 reply. Replies typically served as an extension of the annotation’s original
content, with some annotations serving as answers to the original question (6), hy-
potheses about the behavior of the code (3), and follow-up tasks that they wanted to
complete related to the original annotation (3). For example, P5 made an annotation
about Snake where the initial annotation just said “Game 1: Snake” and created two
replies, with the first reply explaining what the two Snake-related files did, and the
second reply listing all of the bugs she had encountered with Snake – she then revis-
ited this annotation 3 times over the course of the study to keep track of her bugs.
Replies also sometimes functioned as places to discuss the behavior of the code after
the participant attempted to fix a bug associated with the annotated code, with 2
replies commenting on whether their implementation worked or not.

Participants also used pinning, multiple anchors, and anchor clicking as a way
of supporting their navigation while working on the task. 5 annotations had mul-
tiple anchors, 3 annotations were pinned, and the participants used the anchors to
navigate the code base 19 times. In contrast, the control condition did not use any of
their artifacts to help them navigate the code base.

Three experimental participants also chose to delete their annotations once they
were “done” with them, with these participants deleting a total of 14 annotations.
The most successful participant deleted 12 of his 21 annotations over the course of
the study – whenever he fixed a bug he would find each annotation that related
to that bug and delete it, while keeping open the annotations that were still unre-
solved. His usage of Catseye suggests that annotations can function similarly to
comments in systems like Google Docs where, even if the content of the comment
is not necessarily a “to-do item”, the comments can still be resolved in a similar
manner. Control participants only deleted their artifacts, on average, 0.8 times while
experimental participants averaged 2.16 deletions, further suggesting that a Google

4.4. Results 53

Bug # of Experimental
Participants Who
Fixed This Bug

of Control
Participants Who
Fixed This Bug

% of Debugging
Annotations Made
About Bug

% of Debugging
Control Artifacts
Made About Bug

Unable to Play Games Independently 2 2 12.5% 0%

Snake Screen Does Not Refresh 3 0 12.5% 0%

Snake is Too Fast 2 2 15% 88.6%

Snake is Drawn Incorrectly 1 0 2.5% 0%

Snake Food Collision Check is Incorrect 1 0 7.5% 5.7%

Tetris Blocks Falls in Last Key Press Direction 1 1 35% 5.7%

Tetris Rotating Square Causes Square to Move
Upwards

0 0 0% 0%

Tetris Game Does Not End 1 0 12.5% 0%

Tetris Game Calculates Score Incorrectly 0 0 2.5% 0 %

TABLE 4.3: The annotations and artifacts participants created during the study while working on
each bug. The experimental condition made 40 annotations while working on bugs, while the control
condition created 35 artifacts. The last 2 columns refer to the proportion of annotations made about
that bug out of the 40 annotations made while debugging, and the proportion of control condition
artifacts made about that bug out of the 35 artifacts made while debugging, respectively.

Docs-style design encourages more clean-up than regular code comments or exter-
nal notes.

4.4.3 How Did Participants Identify and Fix Their Bugs?

All bugs were identified by at least 1 experimental participant and had at least 1
annotation created about it, save for the Tetris square rotation bug. No participants
in the control condition identified the Tetris rotating square bug or the Tetris score
calculation bug, so no control participants made artifacts about those bugs.

When struggling with difficult bugs, participants seemed to create more anno-
tations and artifacts. For example, the “Snake is Too Fast” bug, which required 10
lines of code to change, was only successfully completed by 3 out of the 7 partici-
pants who attempted it, and resulted in the majority of control condition artifacts to
be about this bug, along with some annotations (see Table 4.3). Conversely, some of
the simpler bugs to fix, such as “Snake is Drawn Incorrectly” had fewer annotations
made about them as there was less need for participants to externalize their thought
processes.

Some particularly complex bugs led participants in the control condition to uti-
lize their notes in different ways than their experimental counterparts did. 3 control
participants made a total of 3 external notes that were either visual diagrams of how
they thought the games should function or were algorithmic step-by-step instruc-
tions for how to design their bug fix. Since the experimental condition created no
similar notes, this suggests that future versions of Catseye may better support users
by including a way to attach and create visual diagrams, screenshots, or drawings to
annotations and support richer interactions for checking off completed steps in an
algorithm.

Participants in the experimental condition occasionally made annotations that
documented how they fixed a bug, with 4 annotations created for this purpose. For

54 Chapter 4. Catseye: Meta-Information for Sensemaking About Code

example, P6 wrote some code to try and fix the Snake Screen Does Not Refresh bug
and annotated their code with the text “Attempt at clearing the score” and edited
their implementation 3 times to try and achieve the correct behavior. P6 then made
2 more annotations on other code snippets that they were referencing when trying
to fix their implementation, hypothesizing about how they could adapt the func-
tionality of that code to solve their bug. Their usage suggests annotations can help
with marking and documenting code while debugging, including code the user has
added that attempts to fix the bug.

4.4.4 Continued Usage

Four participants asked to continue using Catseye after the study, with 2 participants
creating more annotations in their own code after their session. One of these 2 par-
ticipants reported back on her usage of the tool in her daily work. She found the tool
useful for externalizing her “design-oriented notes-to-self” such as “maybe I should
do X instead, if I do decide to do that, this is the code that needs to be edited to make
it happen”. Notably, this is the type of information she says she would normally
write down on a piece of paper and not use code comments for since she does not
want to create clutter that will only confuse her or her collaborators later. She found
Catseye valuable for acting as a space for capturing this “thought history” that lever-
ages the context of the code. Her experience lends further support to our claim that
creating a space for keeping track of developers’ thoughts in a programming tool is
useful.

Further support for our claim that annotating can be useful is the adoption of
Catseye by a small amount of developers following the conference publication of
the work. 7 developers created 35 annotations across 9 unique projects. 8 of these
annotations were deleted, 5 had multiple anchors, and 10 of these annotations had
a total of 19 replies by the author (1 of which was deleted). The annotations were,
on average, attached to code anchors that spanned 3.5 lines (notably longer than the
anchors found in the study, which averaged around 1 line of code), with the longest
anchor spanning 19 lines of code. The annotation’s content averaged 68 characters
(minimum: 0, maximum: 315).

One of these later users authored the majority of the annotations, creating 23 an-
notations – their usage across this larger amount of annotations is consistent with
the sorts of annotation types and behaviors we found in the study and in my usage
of the tool (see Section 4.6). In reviewing their annotations (all of which were made
across a week-long span), it became clear that they had multiple threads of inquiry,
mostly relating to trying to track down a memory-consumption bug. In anecdotally
applying the codes used in the study to their inquiry (ignoring the 2 they deleted),
they created 7 “fact” type annotations, 7 “question” annotations (4 which were an-
swered), 2 “hypotheses” (both of which were followed-up on with replies), 1 “task”
(which was also followed-up with a reply stating the result of the task), and 3 other

4.5. Discussion 55

annotations. The 3 “other” annotations did not fit into the previously-defined cat-
egories: 1 just said “one more candidate” about some code (perhaps in reference to
their task of identifying where a bug was originating from), 1 was a comment stat-
ing “seems kind of sketch, but this is research!” on some code (which is more in line
with the emergent “reaction”-type annotations discussed in Section 4.6), and the last
just says “True” on some variable, which is too terse to be comprehensible for me, an
outsider, to code. 3 of the fact annotations were made with the intention of recording
design rationale. Both hypotheses were followed up on, with one being replied to
3 days after the initial annotation was made. In fact, this user replied to nearly half
of their annotation (9 out of the 21 not-deleted annotations) with 18 replies. Their
replies often followed-up on hypotheses, tasks, and questions (7 replies), proposing
new tasks (1), hypotheses (4) or questions (2) with some replies serving as answers
to those follow-up lines of inquiry (4). This participant also used multiple anchors
and referenced them in their replies – 3 of their annotations had 2 anchors, 2 of which
were explicitly referenced as evidence when coming to an answer. Sometimes these
lines of inquiry would span across multiple days, with the longest span of time being
3 days between an annotation’s initial creation, and the eventual reply that closed
the line of inquiry. While we do not have full insight into their usage of the tool or
motivation for using it (nor why they chose to stop using it), their self-motivated
usage does provide additional evidence for some of the behaviors we believe anno-
tating to be helpful for (i.e., replies for following-up on content and multiple anchors
for clustering and referencing related code).

4.5 Discussion

Our experiment lends support to the concept that annotations may be used as a
lightweight way of capturing and following-up on information that may not other-
wise be kept track of when programming. Participants succeeded in creating ques-
tions, following up on those insights, and revisiting these notes in order to fix their
bugs and had more success, on average, than the control condition.

Participants found the annotating metaphor familiar and understandable, de-
spite the amount of complex activities participants could use the annotations to sup-
port, with participants in the post-task survey saying the system was very easy to
learn how to use.8 Prior work has noted that annotations’ flexible nature and struc-
ture allows them to be used in a variety of ways [5, 21] – we build upon this by
showing that annotations can be used in new ways, including to store output, to
store and capture versions of code, and as navigational aids. Typically, attempts
to support these different activities are siloed into different research tools; annota-
tion systems show a promising alternative where, by utilizing annotations’ flexible

8“I consider it easy for me to learn how to use Catseye”, average score 6.83 out of 7, with 7 being
“Strongly Agree”

56 Chapter 4. Catseye: Meta-Information for Sensemaking About Code

nature, they can act as a more general “workspace” for storing and thinking about
contextualized information a developer cares about.

Another way that participants used annotations as a general “workspace” for
thinking was through using their annotation as a “placeholder” when navigating
their code. For example, P3 created a question annotation asking why a certain
method gets called twice. They followed-up with a hypothesis stating “seems like
it’s because it calls the draw function, which has some special logic that only oc-
curs if play is true”, but, while writing this reply, they paused to continue explor-
ing the file while reflecting on their hypothesis, before returning to the annotation
and finishing their initial thought with a guess, “but you still want to call win-
dow.requestAnimationFrame i guess?”, given what they had learned while explor-
ing. Three other participants paused while creating their annotations to explore the
files and think critically about what they were choosing to annotate, which suggests
that the choice to have the annotations in their own dedicated pane separate from
the context of the code may better support this kind of self-reflection. Notably, these
self-reflections have been shown to improve learning outcomes [41].

Some participants in the Catseye condition thought that the output and version
capturing features would be particularly useful, despite not using them in the study.
Two experimental condition participants reported in the post-task survey that they
would use the snapshot feature in their own programming, since they found it dif-
ficult to go back to GitHub to see other versions of their code and they sometimes
created many small changes that were not tracked in version control. A third ex-
perimental participant noted that they wanted to use this feature to capture output
when they are performing maintenance tasks like refactoring and need to keep track
of many “moving parts” and how their changes affect the behavior of their code.
Since running the study, we enhanced Catseye to automatically capture intermittent
output through connecting into the Visual Studio Code debugging API to capture
and store run time data as replies when an annotated line of code is run.

Two participants in the control condition and 2 participants in the experimental
condition created artifacts that, while phrased as a fact, were incorrect. The con-
trol participants added comments above functions incorrectly stating what the func-
tions’ purposes were. The 2 experimental participants incorrectly assumed what a
function and variable were used for, respectively. These annotations, while incorrect,
are only visible to the original annotator, while the code comments could, in theory,
be viewed by any collaborator, which could potentially misinform them. Even if the
annotations were viewable to collaborators, they would not be in the code acting
as documentation, lessening their potential to be harmful. An incorrect annotation
could be a learning opportunity with the reply feature, where a collaborator could
clarify or correct a misinterpretation of the code.

Two control participants had problems managing their code comments. C1 cre-
ated a comment noting that a particular part of the Snake code looked like it was
used for initialization, then discarded the commit that contained that comment. 10

4.6. My Usage of Catseye 57

minutes later, they searched for that comment, forgetting that they had discarded
the comment. C2 marked a part of the code with the comment “REVISIT” but then
undid a series of changes in order to revert to an older version of the code, removing
that comment in the process, and then never revisited that part of the code. Par-
ticipants in the Catseye condition did not create any code comments (2 participants
started to make code comments before removing them and manually converting
them into annotations) and did not lose any of their annotations during the study
– annotations’ meta-nature may serve as a safeguard from erroneously removing
them. However, Catseye users could, in theory, lose their annotations by erroneously
deleting the code with which the annotation is associated. Currently, Catseye does
not put annotation creation, editing, or deletion into the Visual Studio Code undo
stack, another area where other annotation systems differ – Overleaf similarly does
not, whereas Google Doc puts comment creation in the undo stack (but not comment
editing or resolving!). In my own usage of Catseye, putting annotation creation on
the stack would be beneficial, given that I normally annotated code I had just worked
on – this means that performing an undo operation is likely to modify the code an-
chor the annotation corresponds to, which may change the annotation’s meaning or
cause it to become detached if the code did not exist in the prior edit. Annotation
deletion would also make sense to go on the undo stack, especially in the case that
the annotation is deleted because its code anchor was deleted, given that an undo
operation would bring back that code anchor, thus should bring back the annotation.
This is how similar systems, such as Google Docs, works.

4.6 My Usage of Catseye

I used Catseye while developing Catseye as a form of “dogfooding.” Anecdotally,
we report on the annotations created by myself using the same methodology of la-
belling each annotation by the primary type of information it was meant to keep
track of. We omit annotations made without any text content, as they do not have
enough context for labeling, and annotations made purely for testing the applica-
tion, considering they do not represent “real” usage of the tool. All of these annota-
tions were created by myself to help myself, either in the short term (so they were
ephemeral) or for when I returned to the code later.

Over 12 months, I created 182 “real” annotations in the Catseye repository across
25 source files, with each annotation averaging 28.95 words (min. = 2, max. = 143,
std. dev. = 27.99). 42 annotations had a total of 58 replies, 8 annotations had 18
snapshots, 3 annotations had multiple anchors,9 and 9 annotations were pinned.10

110 of these 182 annotations were deleted as I finished open tasks and iterated over

9Multiple anchors were added late in development, so the lack of multiple anchor usage is primarily
due to the short amount of time to use the feature.

10This is a conservative count, considering we used our log data and the log does not count when-
ever an annotation is pinned or un-pinned, just whether the annotation was pinned the last time it was
updated in the database.

58 Chapter 4. Catseye: Meta-Information for Sensemaking About Code

the code, including removing the code the annotation is anchored to which deletes
the annotation.

The content in my annotations differs slightly from the annotations created in
the lab study, perhaps due to the different nature of development. The most com-
mon annotation type was “task” type annotations, with 48 of the 182 annotations
reporting some open action item I needed to act on – in contrast to the task anno-
tations made in the study, these task annotations served as reminders for places to
change when performing maintenance tasks like refactoring, as opposed to parts of
the code that may have a bug. I also created many question annotations (47 out of
182) – 12 were replied to, with 4 of these replies answering the original question,
and 17 questions were deleted. These questions typically pondered the system be-
havior, previous design choices, or details of the Visual Studio Code API. The third
most common code was “Other”, with 16 annotations. All of these “other” anno-
tations served as a reaction to the code, with these reactions sometimes pondering
the former design rationale and sometimes expressing frustration with implementa-
tion challenges. For example, one annotation, anchored to a particularly confusing
function said “This is a pain”. No annotations were made like this in the lab study,
suggesting that actively implementing and writing code may elicit different types of
information than code understanding and debugging tasks.

Actively using Catseye also led to changes in the tool’s design. Initially, an anno-
tation would be copied if the developer copied the annotation’s code anchor point.
However, given that code was often copied to be used as a template, in active de-
velopment, copy-pasting the annotations resulted in duplicated annotations with
irrelevant content as the code changed, which I found to be more distracting than
helpful. This experience informed our design decision to not copy the annotation
content when the user copy-pastes the anchor code. However, there may be situ-
ations in which it would be better to copy the annotation with the code, such as
when the annotation serves to document behavior about the code. Future versions
of Catseye might benefit from allowing the user to choose whether or not to have the
annotation copied with the code, or alternatively, to add a new anchor to the original
annotation.

I found the tool useful for externalizing and thinking through problems and
stopped using code comments in favor of annotations. The ephemeral nature of the
annotations was particularly useful in the development of Catseye since the code
was nearly constantly changing which lead to a lot of uncertainty about the design
and implementation details – information that I did not want to commit to the code
base as comments in case the information ended up becoming obsolete (a common
problem with code comments [74, 201, 240, 241]).

4.7. Conclusion and Future Work 59

4.7 Conclusion and Future Work

In our development of Catseye, we found evidence that note taking and collecting
of code-related meta-information was helpful for developers when tracking infor-
mation. Further, we found evidence that these activities could be supported using a
singular, lightweight interaction design – annotation. These findings extended our
previous findings from Adamite by generalizing our approach to a different devel-
oper sensemaking domain while tracking other types of information. Below, I briefly
reflect on some take-away lessons and challenges from this work that moved the re-
search forward:

• Working in a dynamic environment with static data introduces complexity.
Before, in Chapter 3, I claimed “context was key” and, as we showed in this
work, it still is. Annotations and their anchor points were commonly revisited
and helped both myself and our study participants think through and rea-
son about problems that were subsequently solved. However, with a mutable
source document, “context” is now multi-dimensional – the source location
and the surrounding information is constantly changing across time while the
annotation, if a developer chooses not to edit it, is stuck back in time. We
largely, albeit unintentionally, avoided this challenge in this study, given that
participants did not edit the source code very much and the study was a short,
finite window of time in which the annotation could not “age” out of its con-
text. However, in my own usage of the tool, I experienced firsthand how an-
notations, while useful in the moment, would eventually lose their context
and become clutter, either due to my memory slowly eroding over time or
the source code changing so much such that the annotation content itself no
longer made sense. Small-scale design decisions, such as choosing to delete
an annotation when its anchor is removed and not copy-pasting an annota-
tion if its anchor is copied, helped a bit but are not enough to fully address
the problem. How do we build systems that are designed with information
mutability in mind? Chapters 5 and 6 probe on this challenge. This challenge
speaks particularly to the earlier discussion of environment and source muta-
bility and provenance introduced in Section 1.1 and how that impacts reliability
of anchoring across time.

• Lightweight unification of tooling that operates at a meta-level is a rich and
relatively untapped market. Annotating, as a practice, has largely been local-
ized to and studied in the context of reading materials. However, choosing to
apply annotating to a dynamic space opens up a myriad of opportunities for
more domain-specific tooling. While this chapter only explores source code
and some of the types of meta-information you may want when working with
source code, such as code versions or outputs, one can imagine generalizing
the design approach put forward by this work to other domains. For example,

60 Chapter 4. Catseye: Meta-Information for Sensemaking About Code

Figma has a commenting system, but it is relatively limited – what if we “su-
percharged” these comments to additionally version themselves and the de-
signs they are attached to to help with reasoning about design rationale over
time and across collaborators? What if these comments could be used to ex-
tract and aggregate different parts of a design together to create a new proto-
type? I believe part of the reason commenting and annotating are so ubiqui-
tous across information authoring and management platforms is because there
is a lot of power in being able to directly point at something and say “this is
what I am talking about”. Information closeness is a strong undercurrent of
this work and Catseye and Adamite show the power of this in both commu-
nicating across time (Adamite) and in binding otherwise-disparate pieces of
information together (Catseye). In this way, we unify content through the com-
mon reference point of the anchor. For those interested in building their own
annotation systems, I strongly suggest understanding the types of information
management tasks your clientele are actually trying to complete when anno-
tating and more directly supporting those tasks through increasing both the
types of information annotations can hold and giving more functionality in
terms of what an annotation can do. Such annotating mechanisms can lever-
age the user’s working environment and, potentially, the document structure in
order to lower information authoring costs and support other tasks, such as
tracking data provenance.

Much of the success of the annotation approach can be attributed to the localized
nature of the annotations and their connection to the source material through their
anchor point. This connection allows for the note to serve as a navigational way
point, allows for commenting on different types of code with the same interaction
method (e.g., commenting on a variable within a line of code versus commenting
on a whole conditional that spans multiple lines), and supports code-specific ac-
tivities including versioning and output capture. Despite these powerful attributes,
much of that power stems from the tight coupling between the annotation and its an-
chor point – thus, that power is lost when the annotation becomes unanchored. We
further explore questions of anchoring, along with longer-term benefits and man-
agement of annotations in the next chapter on annotation curation. We then extend
our code anchoring support and the types of information that may be attached to
the code anchor points through extending Catseye into a long-form documentation
tool, Sodalite.

61

Chapter 5

Curating Ephemeral
Meta-Information with Catseye

5.1 Overview

In our creation and development of Catseye and Adamite, a constant design ques-
tion was how to manage the scale of annotations, how to deal with changing source
content, and what to do with annotations across time to increase their utility, given
their ephemeral nature. These challenges are not dissimilar to challenges encoun-
tered with other “information scraps” (a class annotations fall into) [21, 22] – namely,
the ad hoc nature of creating and using information scraps is often at odds with the
design of traditional personal information management (PIM) tools, which typically
prescribe an organizational and rigid structure for managing these scraps [21, 251].
“Information scraps” are characterized both by their form (e.g., lightweight, often
captured on various platforms across different modalities) and by their intent (e.g.,
sticky note to remind you of an upcoming appointment, Google Doc reference list of
URLs linking to recipes1, etc.). These scraps are most often used in the moment as a
form of cognitive offloading and externalization, but occasionally are meant to per-
sist indefinitely (such as in the case of the reference list – a living document) or until
a set time (such as with a reminder of an appointment).

Annotations and our annotation platforms, Catseye and Adamite, both require
and allow for some amount of structure (i.e., requiring an anchor point for contex-
tualization and, in Adamite, supporting organization through types and optional
tags). However, the content of these annotations and what to do with the annota-
tions falls into the information scrap challenge in that their utility, especially over
the long term, is often not obvious (e.g., is a developer using Adamite to annotate
this API method as a reminder to use it later? Or to mark it as obsolete?). Anno-
tations have the additional challenge of being dependent upon a stable anchoring
point, which must remain constant or, at least, semantically equivalent to the origi-
nal anchor point’s content, which introduces additional design challenges in terms
of determining what to do with these information scraps after some time has passed

1This example is taken from my lived experience – my fiancé and I have one of these documents
and it is chaotic, to say the least!

62 Chapter 5. Curating Ephemeral Meta-Information with Catseye

and the associated document has changed. Lastly, another design challenge that dif-
ferentiates our annotation systems from prior work around information scraps and
PIM tools is that our tools are meant to be used collaboratively. This leads to the chal-
lenge of scaling these systems to a point where potentially hundreds of annotations
are shared to accelerate other users sensemaking of documentation and code. Given
enterprise level systems, with potentially hundreds of engineers using these systems
on a shared code repository with Catseye, how does one ensure all annotations are
versioned properly, are useful, and have consistent and stable anchoring points?

Given this tension between retaining the pros of annotating as a lightweight way
of expressing an idea when sensemaking while ensuring that our design is scalable
and robust to changing documents, we began a design probe on how to support
annotation curation. We began an early exploration of this concept with Adamite
through the creation of an Adamite website2 – through that exploration, we found a
need for batch processing of annotations. We then focused our attention on Catseye,
given the more ephemeral and dynamic nature of annotations in that context – we
hypothesized curation would be even more important in that space. We modified
Catseye to support large-scale curation3. Our curation work with Catseye is two-
pronged – one prong explores how to deal with annotations en masse as a way of
cutting down on potentially hundreds of irrelevant annotations, e.g., to throw away
after their moment of utility is over. Another prong explores annotation’s connectiv-
ity to a source document and how to algorithmically re-attach the annotation across
numerous scenarios, as an additional form of curating one’s set of annotations (see
Figure 5.1). We then implemented these designs into Catseye– all screenshots in
this chapter represent the current version of the Catseye system (in contrast to the
screenshots in the previous chapter). Through this exploration, we created a set of
prototypes and design insights that informed our later work, especially with respect
to Sodalite.

5.2 Background and Related Work

Management of lightweight information, such as notes and annotations, has been
extensively studied in both the fields of psychology and Human-Computer Interac-
tion [14, 21, 22, 25, 54, 136, 215]. Researchers in psychology have largely studied this
phenomenon with respect to both the cognitive underpinnings of how humans make
sense of and organize this information [14, 85, 137, 215] and in terms of the motiva-
tion behind creating these information scraps [85, 116, 136, 137]. HCI research has
explored this phenomenon from a more applied standpoint, including how users
collect and create this information [54, 84, 116], annotate it [84], and use it for later
tasks [25, 86, 124]. A predominant theme across most of this work is that the cost

2This work is currently unpublished. It was done in collaboration with Emma Paterson, River
Hendriksen, Kazi Jawad, Connor Shannon, Andrew Macvean, and Brad A. Myers.

3This work is currently unpublished. The Catseye curation work was done in collaboration with
Shannon Bonet, Matthew Shu, Andrew Macvean, and Brad A. Myers.

5.2. Background and Related Work 63

FIGURE 5.1: An example scenario in which an annotation’s anchor is updated in multiple ways after
a git pull. In the case only the position changes, the annotation content should stay as-is and the
anchor will update to represent the new start and end positions. If the anchor is deleted, it is un-
clear whether to delete the annotation or to re-attach the annotation at a different, semantically similar
point. Likewise, if the content within the anchor’s bound changes (this._copyVscodeMetadata to
this.getCopyMetaData(), in the figure), under different circumstances it may make sense to delete
the annotation, keep the annotation on the new anchor content, or re-attach the annotation elsewhere.

of externalizing this information must be kept low [54, 116] (otherwise, users have
been known to favor pen and paper [54]) and mechanisms for organizing and curat-
ing the information must be flexible [54, 117, 251]. Curation typically occurs when
a user wants to transform their information scraps into something that can be used
by another person, such as a blog post [157] or decision table [151]. A challenge in
curation is that it is typically cognitively expensive and time-consuming [152] and a
user’s mental model of a problem space is often evolving, so the curated represen-
tation can become out-dated [72, 98, 124]. However, failing to curate these sets of
information scraps can result in the information becoming intractable [54].

Less work has explored annotations, specifically, and their relationship with source
documents (i.e., anchors), especially with respect to curation. A prior literature re-
view [5] found that the flexible nature of annotations allows them to serve a va-
riety of purposes, including supporting in-context commenting and creating con-
nections among parts of text. Other work noted that annotations may be seen as a
conversational tool among the document users, as well as with the document cre-
ators [75, 88]. The nature of annotating and its tight coupling of user commentary
and source document has made it useful in a variety of crowd-sourcing contexts,
such as for question-answering on web pages [42, 102, 104] and in classrooms [70,
77, 279]. However, most of these works have been in the context of static materials,
such as books, and not dynamic materials, such as source code, which inspired us
to further explore this often-overlooked challenge in utilizing annotations for long-
term information collection and sharing. Our work expands on this annotation and
information management work through exploring mechanisms for both automat-
ically re-attaching annotations given document changes and curating annotations
with user interaction techniques.

64 Chapter 5. Curating Ephemeral Meta-Information with Catseye

FIGURE 5.2: How the Adamite website appears. (1) is the search and filter pane for finding relevant
annotations. (2) is the list of groups the user is a part of. (3) is the sort bar – currently the list is sorted by
time in descending order. (4) are the batch operations a user can do on their set of selected annotations.
(5) is an annotation – it is currently selected, shown at the green checkmark in the top left corner. (6)
is another annotation with two anchors (the two green rectangles with text and a URL) and annotated
text.

5.3 Preliminary Exploration of Adamite Annotation Curation

Prior to investigating annotation curation with Catseye, we sought to explore to
what extent annotation management could be supported on the web with Adamite.
Our primary motivations for supporting annotation management in the context of
developer documentation annotations created with Adamite were as follows:

• Annotations can become obsolete as a developer learns more about a particular
API and completes various implementation tasks, so developers should have
an easy and effective mechanism to remove annotations.

• Since a user’s annotations are most-likely spread across multiple web pages,
developers should have a centralized hub where they can view annotations in
aggregate.

• Annotations have the potential to be synthesized together into groups or doc-
uments which can only feasibly be done in a dedicated workspace outside of
the context of the Adamite sidebar.

• Annotating is a social activity – thus having a space in which annotations can
be shared and managed prior to sharing with others is paramount.

These design goals lead us to the development of the Adamite website, which
can be found at https://adamite.netlify.app.

Supporting web-based annotation curation and management on a website intro-
duced some design challenges. A key attribute of annotations is their presentation
and existence in context – with a web-based browser extension, that context is the

https://adamite.netlify.app

5.4. Preliminary Study of Catseye Annotations 65

web page and text the annotation is attached to on the web page. However, when
the annotation is presented out-of-context on a stand-alone website, it is difficult to
convey that context outside of merely displaying the anchor text and annotation (see
Figure 5.2-5 and 6). In designing annotations for a web page, there is a question of
how much context from the original web page to display – part of an annotation’s
power lies in its brevity and ephemeral nature. Adding in too much information to
the website version of an annotation, such as more surrounding text, may make the
annotation difficult to parse. However, choosing to not provide additional context
can make the annotation difficult to understand. Ultimately, we chose to preserve
the annotation’s brevity and mirror its appearance to how it would appear in the
Adamite sidebar with the hope that the familiar presentation would make the anno-
tation more comprehensible. An alternative design could be to extract the surround-
ing HTML and styling, similar to how Unakite functions [151].

Considering one of the key goals of this work was to support curating through
batch removal and synthesis, the Adamite website is where we first explored batch
processing of annotations (see Figure 5.2-4). The batch processing on the Adamite
website functions similarly to how batch processing on other information manage-
ment systems, such as E-mail inboxes, work – a chosen operation will act on any
annotations that are are selected (in that their checkboxes are in the checked state).
For the website, we chose to support mass deletion, pinning, tag addition and re-
moval, and group management, where groups are a way of sharing a specific set of
annotations with other Adamite users. In this way, we wanted to support moving
annotations depending upon where they exist with respect to an individual devel-
oper’s sensemaking – if they are irrelevant, delete, if they are important, pin, and if
they need to be re-categorized in some way, move groups or change the annotation
tags. We also support undo and redo, such that developers do not, e.g., accidentally
remove an important annotation and have no way of getting it back. We further
explore batch processing of annotations in Section 5.6 in the different context of de-
veloper code annotations where the curation is done in-editor and the annotations
have slightly different properties than the Adamite web annotations. Some of the
batch processes returned, such as deletion, while others did not – namely group
management, since Catseye does not have a concept of “groups”.

Through this exploration, we developed techniques for acting on annotations in
aggregate that would inform our later design of batch processes for Catseye anno-
tations. However, some activities we wanted to support, such as transforming a set
of annotations into a new form or document, were not supported with the Adamite
website, which we support in the new version of Catseye (see Section 5.6.2).

5.4 Preliminary Study of Catseye Annotations

As an initial exploration of what annotations to curate and how, we explored an-
notations already created naturally by myself as part of dog-fooding Catseye (see

66 Chapter 5. Curating Ephemeral Meta-Information with Catseye

Section 4.6). A subset of these annotations (122 out of the 181) were created from
the fall of 2021 to the spring of 2022 and were developed while implementing and
debugging various parts of the Catseye code base. In anticipation of our summer
undergraduate researchers joining the research team, I hand-coded each authored
annotation by whether or not I believed it would be useful to someone unfamiliar
to the code base. This was done in service of finding patterns in terms of the anno-
tation’s structure and content and whether or not I believed it would be beneficial.
I chose to do this coding independently for multiple reasons – for one, this inter-
nal decision-making of whether or not to “share” a potentially “helpful” annotation
is normally how such curation would happen “in the wild” [77], as people are not
typically working together to decide whether or not to make an annotation public.
Further, determining whether or not an annotation may be helpful requires knowl-
edge both of the annotation’s content (which can be difficult to understand given
their terseness) and the code base (which, at that point, had only been developed by
myself), thus finding other researchers with the requisite knowledge to assist in the
coding was not possible. Only annotations which were not already-deleted were in-
cluded in the analysis since deletion suggests the annotation was no longer relevant
to me, let alone relevant to someone else. Signals of usefulness included whether or
not it documented some part of the code, how comprehensible the annotation was
(with many of my annotations being informal in nature), and whether the code and
annotation content were still relevant or not. Considering I could not definitively
say whether or not each annotation would be helpful for the summer students, the
codes were indefinite and included the codes “Probably”, “Maybe”, and “Probably
Not”. For each determination, I included an explanation as to why I believed the an-
notation was probably, maybe, or probably not helpful, and, for situations in which
I thought the annotation could be helpful (i.e., “Maybe” and “Probably” codes), I in-
cluded an additional code for in what development context I believed the annotation
could be helpful. Development working contexts in which I anticipated annotations
could be helpful for included software maintenance, extension testing, API usage,
understanding design rationale, or feature requests.

Through this preliminary analysis of the 91 non-deleted annotations that existed
in the code base at the time, the majority of annotations were “probably not” help-
ful (49), while 33 were “maybe” helpful, and 9 were “probably” helpful. The most
common reason for annotations not being helpful was due to the content no longer
being relevant, either because the code had changed enough such that annotation’s
content was out-dated (18) or because the task or bug the annotation was referring to
was complete (16), suggesting that a mechanism for easily removing completed task
annotations, like Adamite, would be useful in Catseye. However, detecting code-
versus-annotation content inconsistencies is less trivial and part of the inspiration of
our re-anchoring work. Additionally, some annotations were marked “not helpful”
because the way in which they were written was too informal to be easily shareable
by myself and comprehensible by another developer (11). Prior annotation research

5.4. Preliminary Study of Catseye Annotations 67

in the classroom context has discussed that sometimes, when moving an annota-
tion from private to public, annotation authors had to go through a pre-processing
step prior to making their annotations public, in which they typically make the an-
notation longer and more formal by expanding on ideas that were previously just
terse reminders to themselves [77]. Such a step may also be required when curating
annotations prior to sharing them for code comprehension.

The 9 annotations I had the most faith in potentially being helpful were anno-
tations related to specifications on how to implement or maintain some part of the
code base (5), how to use some part of the VS Code API (2), or documented some
unintuitive part of the code base (2). Similar to what we saw in the Adamite study,
the majority of the potentially helpful annotations were answers to questions I had
at some point (4/9) and, like higher-quality Stack Overflow answers [177], 2 of the 4
referenced external resources I used that informed my answer. 2 of the 9 annotations
used the annotated code itself as an example of how to complete a task (e.g., “it’s re-
ally this simple to authenticate with github”) while 2 other annotations bound a task
to the code as a reminder (e.g., “Need to update this [code] too whenever we update
the annotation model”) – all 4 of these examples leverage the tight coupling of infor-
mation and code to transform the code into a representation of an implementation
constraint or code example. These qualities make these annotations seemingly more
appropriate to be shared than others, thus ones to curate for other users.

The remaining 33 annotations were less obvious as to whether or not they should
be shared. A common theme across these annotations was a lack of certainty in the
subject matter, with 8 being questions and 5 hypotheses. Notably, this is similar to a
finding from the Adamite study, in that unanswered questions were one of the least
helpful types of annotations. Other annotations would only be potentially helpful
if the student was working on that particular part of the code base and would oth-
erwise be too confusing to be of any use (10). For example, 6 of the 10 annotations
were related to how the anchoring algorithms did or did not work. The mecha-
nism for keeping anchor points up-to-date while a user is actively editing code is
easily the most complex part of Catseye and also the most prone to bugs, leading to
many annotations about those parts of the code base – if the student was working on
anchoring, then these annotations could be helpful, otherwise they may draw atten-
tion to this part of the code base that is difficult to understand. In this way, curating
annotations for later developers may need to change dependent upon what task
the later developer is performing and whether or not the annotations are relevant
to them, with an annotation’s location a particularly powerful signal of relevance.
Other reasons for annotations being “maybe” helpful included acknowledgements
of potentially unintuitive design and implementation decisions (9) and potential fea-
ture ideas (4).

Through this exercise, we came up with the following design considerations
when supporting annotation curation:

68 Chapter 5. Curating Ephemeral Meta-Information with Catseye

• Annotations, in order to be shareable, must be relevant to both the current
code in the IDE and to the future reader.

– This suggests a need for both author-side and reader-side curation func-
tionalities.

– This suggests a need for the relationship between the annotation con-
tent and code content to be algorithmically or deterministically evaluated,
prior to showing the annotation to readers.

– Relevance is often lost over time as code is changed, tasks are completed,
and so on.

• Some amount of pre-processing must be done by the annotation author as part
of the curation, prior to sharing with later readers.

• Signals such as answered questions and annotations that contain reference
URLs suggest higher-quality annotations that may be candidates for sharing.
Signals of lower-quality annotations include lack of certainty (e.g., “I’m not
sure about this...”) and a lack of formality in tone.

5.5 Design Probe: Catseye Annotation Curation through Re-
Anchoring

Initially, we did not consider the act of (re-)attaching or removing an annotation
given the source code changing (hereafter referred to as “re-anchoring”) a form of
curation. Instead, we considered it a technical problem – how do we find the most
appropriate point to re-attach an annotation given a change in which the original
code anchor was removed, moved to a completely new location, or changed in such
a way the code is semantically similar but textually different (e.g., myList.forEach(t
=> t + 1) to for(const x of myList) x + 1)? While this technical component of
the project is, indeed, a challenge, upon reviewing the Catseye annotations (includ-
ing how many were no longer relevant due to code changes) and considering vari-
ous scenarios in which re-anchoring is necessary (Figure 5.1), it became clear that
the mere act of choosing to either remove an annotation or re-anchor it given a
code change is a form of curation. With this in mind, we sought to both design
an algorithm that could find potential re-attachment points and a user-interface for
re-attaching or removing the annotation, given uncertainties around whether the
annotation should persist or not.

5.5. Design Probe: Catseye Annotation Curation through Re-Anchoring 69

5.5.1 Algorithmic Re-Anchoring

We designed our algorithm with the goal of finding the most-likely re-attachment
points, given an unanchored annotation. We considered an annotation to be unan-
chored if its last logged anchor point that we stored in the database was either in-
valid4 when attempting to attach on system launch or the text that the anchor con-
tains is too dissimilar to the last-logged anchor content.

FIGURE 5.3: How the re-anchoring algorithm expands
its search outwards, given no sufficient match at each
step. (1) is the original anchor content and location, (2a)
and (2b) are the 5 lines above and below, respectively, the
original anchor location, (3) is all of the code belonging
to the parent node of the original anchor in the AST, and
(4) is the whole file.

If an appropriate match is not
found at the original anchor loca-
tion (Figure 5.3-1), the search ex-
pands outwards to the 5 lines above
and below the last-known location
(Figure 5.3-2a and 2b), given re-
search that source locations, given
a change, are often within a small
line range [208]5. At this point,
we begin utilizing our text and
distance-matching algorithm to de-
termine whether the searched range
of text contains a reasonable, poten-
tial match.

The algorithm begins by to-
kenizing the last known anchor
string by stripping white space and
syntactical symbols. This same to-
kenization is performed on each
code line within the search space.
We first see whether there is an ex-
act match in terms of token content
and order within the search space
– if so, we return the source code
line’s line numbers and offsets. If
no exact match is found, we attempt
to find the closest match.

For the closest match, we com-
bine a variety of heuristics in order to calculate closeness. This includes the edit
distance between each token in the anchor text and the source document text, the

4An anchor can be considered invalid when one or both of the bounds of the anchor (i.e., its starting
line, starting offset, ending line, and ending offset) are not contained within the document’s starting
and ending lines and offsets.

5Note that this approach is contingent upon Catseye having been run semi-recently, thus having
a recent “memory” of where the annotation should be anchored. In situations in which the code has
changed many times but Catseye has not been used, we additionally keep track of the last known Git
commit the annotation was on, making it possible to move forwards in time along the commit tree and
run the re-anchoring algorithm at each commit.

70 Chapter 5. Curating Ephemeral Meta-Information with Catseye

distance from the last known location of the anchor and the source location, and the
similarity of the surrounding text in the source document to the surrounding text
that is saved in our database. The surrounding text is used in combination with
the saved anchor text in order to prevent the algorithm from favoring common key-
words, in the case the user annotated code composed primarily of said keywords
(e.g., for, while, function, etc.). Given these heuristics, a weighted average is cre-
ated for each token, given its comparison point, and these weights are averaged
by line. The algorithm then chooses the sequence of contiguous tokens that yields
the highest average value – if the anchor is above a certain threshold, the anchor is
added to a list of candidate anchors for the user to review. This process is repeated
for each line within the search space. If no anchors meet the quality threshold, the
search is expanded to the code within the parent node of the AST (Figure 5.3-3) and,
if that search also does not yield sufficient anchors, the search is expanded to the
whole file.

FIGURE 5.4: How running the matching algorithm at the token level with this._copyVscodeMetadata
across multiple tokens in multiple code lines would yield different results, given the string difference
and location difference. Note that the most reasonable re-anchoring spot from Figure 5.1 has the high-
est match score.

There are situations in which our algorithm may not work. One feature of Cat-
seye is that the user can choose to annotate any code of any size, whether or not
their anchor consists of syntactically correct expressions – this means that the user
can choose to annotate, for example, just the letter “u” in the keyword “function”.
While it is unlikely a developer would choose to do that, the terseness of the an-
chor would make finding candidate anchors more difficult. We attempt to mitigate
this issue through utilizing the surrounding code and taking the anchor’s original
location, including line and offsets, into account.

Conversely, a user may choose to annotate a large amount of code, such as a
whole file or function. Fuzzy anchoring [50] the text, given that amount of content
and taking into account the additional code-structure information we have (such as
what the parent AST node is and what the original name of the method was) should
yield reasonable results, but it is unlikely the anchor content will ever be exactly
the same in these cases. The algorithm may not find reasonable candidate locations
if the file has changed too significantly since the last time the annotation was an-
chored. This is why we chose to show the user candidate locations and allow for
other re-anchoring options, including manually choosing a new anchor or leaving

5.5. Design Probe: Catseye Annotation Curation through Re-Anchoring 71

the annotation unanchored, given that it is difficult to determine if the annotation
should be deleted or not in that case. Additionally, we have reason to believe that
both of these types of anchors (too small or too big) are not particularly common,
given that most anchors in our Catseye evaluation (Section 4.4) consisted of one line
of code.

Our algorithm is also run under the assumption that there exists at least one
reasonable candidate anchor location within the source code and the algorithm’s
“job” is to find that location. However, this assumption may not be true in cases
in which the anchor point was completely removed from the code. In this case,
it is unlikely that the algorithm would find candidate anchors that would match
its knowledge of the original anchor code and its surrounding content and yield
suggestions. Failing to find new candidate anchors may be okay in the case that the
annotation should not exist anymore given the removal of the code it is attached
to. However, there may be situations in which case re-attaching would make sense
– for example, if a user annotated a function call, reasonable re-attachment points
may include other code locations where that function was called or the definition
for the function. Given the ambiguity of these situations, we ultimately leave the
final decision of what to do with their annotation up to the user.

5.5.2 User Interface for Re-Anchoring

Upon finding a set of reasonable new anchor locations for an unanchored annota-
tion, the user interface for Catseye updates such that the user can curate these an-
notations (see Figure 5.5). When re-anchoring an annotation, a user can view what
anchor candidate(s) Catseye automatically found on launch (Figure 5.5-1 and 5) or
choose to leave the annotation unanchored by dismissing the re-anchoring interface
(Figure 5.5-2). In this way, we wanted to support the lightweight nature of Cats-
eye by not forcing a user to act on the annotation if they do not want to. Catseye
also sorts the candidate anchors by how confident it is about each anchor given
the weighted averages, with the highest-weighted anchor shown first. In the case
of many candidate anchors, the system only shows the top 10, such that users are
not overwhelmed with many potentially incorrect choices. The system additionally
states its confidence in the top-left corner of the suggested anchor (in this case, it
determined this anchor to be a “very similar match”). Additionally, if the code has
either changed so significantly that none of the system-suggested anchors are correct
or the user wants to re-contextualize their annotation to this new working context,
they can choose to manually re-anchor the annotation at any arbitrary point within
the code base by selecting some code and clicking the “Manually Reanchor” button
(Figure 5.5-3). As discussed in our earlier scenarios (Figure 5.1), there may be sit-
uations in which there is no longer an appropriate anchor point, in which case the
annotation can be deleted or left unanchored.

72 Chapter 5. Curating Ephemeral Meta-Information with Catseye

FIGURE 5.5: The user interface when re-anchoring an annotation. (1) shows the last-known anchor,
along with the surrounding code in green. (2) is the Show/Hide Suggestions button, allowing the
user to leave the annotation unanchored, if the user so desires. (3) is the Manually Reanchor option
– the user can select some code in the editor, then click the “Manually Reanchor” button to set the
anchor to their selected code. (4) is the first of multiple candidate anchors. (5) are the options for what
a user can do with a candidate anchor – they can either remove that particular anchor as an option,
“Reanchor” their annotation to that anchor, or click through the carousel (i.e., 4 gray dots) to view their
other options. (6) is the annotation.

To further support these anchoring activities, the design of Catseye anchors was
updated to include additional meta-information about the anchors to assist in cu-
ration. Anchors now display their state via the anchor icon in the top right corner
to further clarify to users whether their anchor exists and is being tracked currently
(i.e., anchored) or not. Catseye will also show the last-known location of the anchor,
along with what Git branch and commit this anchor was last seen on and the time at
which it was created (Figure 5.5-1, top left corner). While the text surrounding the
anchor is primarily used as supplementary data for the re-anchoring algorithm, we
also show it to the user to help them in placing their anchor in context when review-
ing their annotations – candidate anchors also include this information to help users
in visually assessing whether or not the anchor seems correct.

In designing re-anchoring capabilities for Catseye, a number of design challenges
arose. One interesting consideration was whether or not to even have the user re-
view candidate anchors when their annotation becomes unanchored. Indeed, given

5.6. Design Probe: Catseye Annotation Curation through Batch Processing 73

high enough confidence in a candidate anchor, it may be an overall better user ex-
perience to simply have the system place the annotation at a new anchor without
requiring the user to confirm the new location or informing the user it performed
this re-anchoring. Ultimately, we decided to loop the user into this re-anchoring
process whenever the system does not find an anchor that exactly matches the last-
logged anchor. We did this not only to confirm that the resulting anchor is correct,
but also as a forcing function for users to perform curation on their annotations. We
hypothesized that the point at which an annotation becomes unanchored, such as at
a git merge or git pull, is also a likely time at which the annotation is no longer
relevant. We believed this due to the fact that the most common reason an annota-
tion was marked as “probably not” helpful during review was due to the annotation
being no longer relevant and this lack of relevance most often stemmed from the
code having changed too much. By allowing the user to actively participate in the
curation process when this change occurs, we expect that problems noted in ear-
lier PIM and “information scrap” research where users get “lost” amongst a sea of
uncurated and irrelevant notes can be avoided [54].

5.6 Design Probe: Catseye Annotation Curation through Batch
Processing

As discussed in the introduction to this chapter, a key feature of information scraps
is their ephemeral nature. However, when programming, a developer is already
under a large amount of mental stress and, thus, doesn’t necessarily have the mental
bandwidth to not only manage their code but also their annotations to throw them
away. Thus, we sought to improve Catseye’s design to make this activity even more
lightweight.

With this in mind, we provide functions for either increasing the utility of an
annotation for a later reader or easily removing it from consideration. In this way,
we see annotations as a mid-point in terms of a developer’s individual sensemaking
journey in which there is a chance the information they gain will no longer be rele-
vant, thus should be thrown away, or is a piece of evidence in a longer stream of in-
formation (or information “quest” [90]) that can be later transformed and structured
into something useful. To lessen the cost of performing either of these activities, we
introduce batch processing of annotations into Catseye. This batch processing works
both in tandem with structuring activities, such as adding annotation types (taken
from Adamite), and with culling operations such as deletion.

We chose to focus on batch processing over other types of potential information
management processes for multiple reasons. The predominant reason is batch pro-
cessing lends itself nicely to the information management practices we saw in our
studies of Catseye and Adamite along with prior research (e.g., [124], [151]) – there
is a common pattern in which people performing sensemaking forage for and gen-
erate information for a while, then, upon reaching a natural stopping point, pause

74 Chapter 5. Curating Ephemeral Meta-Information with Catseye

and revisit the set of information amassed during their sensemaking episode. For
example, in our Catseye study, one participant, upon fixing a bug, would go back
to each annotation they created related to that bug, and either delete the annotation
or respond to it to “conclude” that thread of inquiry. Batch processing works well
in this paradigm in that each “set” of annotations created during some sensemaking
can be treated as a batch and operated on to perform the types of activities we hy-
pothesize would be helpful. Other reasons for choosing to explore batch processing
includes the ability to adapt already-known successful information management UI
techniques such as filtering and because Catseye’s list view of annotation lends itself
nicely to acting on items in aggregate.

5.6.1 User Interface for Batch Processing

FIGURE 5.6: The user interface for batch operating on annotations in Catseye. (1) is the search bar, (2)
is the set of sorting and filtering operations including sort by location or time, scope of annotations
to include (including annotations made on this file, this project, or across all projects), who authored
the annotation, what annotation type it is (similar to the Adamite annotation types), and whether
or not the annotation has been marked as “resolved”, is pinned, or is anchored. (3) is the set of batch
operations a user can perform on any selected annotations, with options for (from left to right) merging
(Figure 5.7), pinning, sharing, resolving, or deleting. (4) are collapsed annotations which are currently
checked, meaning they will be included in any batch operations selected at (3). (5) are the buttons for
operations a user can perform on a single annotation.

The user interface for managing annotations en masse draws from other systems
that utilize large-scale filtering and sorting of information (e.g., shopping websites).
The Catseye pane now includes a top bar comprised of operations a user can perform
to modify their set of visible annotations through searching (Figure 5.6-1), sorting,
and filtering (Figure 5.6-2). Some specific filters, such as “Unanchored Only” and
“Pinned Only”, were designed such that users can find annotations that they may
want to follow up on, such as for re-anchoring an annotation. Others were designed
to remove annotations that may not currently be relevant, such as “Show Resolved”,
in that the default is to not show resolved annotations, which are expected to rep-
resent finished tasks or answered questions. When finding annotations to assist a

5.6. Design Probe: Catseye Annotation Curation through Batch Processing 75

later developer, however, finding such resolved annotations may be useful to isolate
answered questions that could be useful, when used in conjunction with the type
filter to select only question-type annotations. In this way, we sought to improve
upon Adamite’s typing, filtering, and sorting functions through combining multiple
filters and sorts at once to isolate potentially useful annotations.

Once a user has created a filter or search to show annotations they want to do
something with, the user can perform batch operations. The currently-supported
batch operations (shown at Figure 5.6-3) include merging, pinning, sharing, resolv-
ing, and deleting annotations. These batch processes will operate on any currently-
selected annotations (Figure 5.6-4). Like with the Adamite website, many of the
functions are taken from similar information management systems, with the ratio-
nale that such functions would similarly make sense in moving an annotation to the
next stage of processing, whether that be when the annotation is no longer useful
(batch resolution, un-pinning, and deletion), still useful (batch pinning), or ready
to be used by other teammates (batch sharing). However, we found a need to also
transform annotations prior to their usage by other teammates, leading to the devel-
opment of our novel merging interface.

5.6.2 Merging Annotations

Merging annotations is the act of taking two or more annotations and combining
them to form a single new annotation, while deleting the original annotations (see
Figure 5.7). Considering a large part of curating content to be usable by later users is
synthesizing information into a more connected and comprehensible form [151], we
sought to provide an interface for that process that not only supports this synthesis
but also removes the “leftover” content after that work is done, thus supporting two
aspects of the curation process in one interface.

The user interface for merging annotations allows for a high level of specificity in
terms of allowing the user to decide what parts of each annotation they want to keep
and what they want to remove. Each core text-based component of an annotation
(i.e., anchor, annotation content, replies) can be imported into the merged annota-
tion. When text from an annotation body or reply is added to the annotation content
(Figure 5.7-5), the content is automatically marked with additional meta-information
including who authored the information and the time at which it was originally au-
thored such that the original context is available. We chose to support adding reply
content to the main annotation body considering many of our most useful anno-
tations, both in this study and in the Adamite study, are question-answer pairs in
which the answer was typically in a reply that may be missed, thus adding that rel-
evant and important information to the main annotation content could help a later
user’s sensemaking. The user can also choose to expand upon, pare down, or oth-
erwise transform the text, e.g., to be more formal since the information is imported
directly into an editable text field.

76 Chapter 5. Curating Ephemeral Meta-Information with Catseye

FIGURE 5.7: The UI for merging annotations. (1) are batch operations for creating the merged an-
notation through importing all of the content from the original annotations. (2) is a preview of the
annotation anchors, with the option to remove them (trash can icon to their right). (3) is the regular
annotation authoring UI, such that users can add types and text that may not be in the original anno-
tations. (4) is the first annotation that is being used to create the merged annotation – the checkmark
shows the anchor will be included. (5) points at the icons for importing annotation content and replies
into the resulting annotation – annotation replies can be added to the merged annotation’s main body
text by clicking the double chevron icon, while the single upwards arrow will bring the reply’s content
up as a reply. (6) is the reply content for this annotation. (7) is the other annotation to be included in
the merged annotation – since it is a highlight annotation, it has no annotation text or replies.

We also support batch operations within the merge interface itself. Users can
choose to add all annotations or add all replies (Figure 5.7-1) to their resulting anno-
tation. Given the level of complexity of this UI, one can imagine a developer being
reticent to use it since the cost of authoring new annotations is relatively low, thus
creating a completely new annotation that includes content from other annotations
may be easier than using the merge functionality. However, we expect that in the
case of more complex merge cases, such as merging many annotations or merging
annotations with multiple anchors across different files, these batch operations in

5.7. Discussion and Future Work 77

conjunction with the high-level of specificity afforded by the interface would be a
better user experience than attempting to make the annotation from scratch.

5.7 Discussion and Future Work

In designing for annotation management, the user interface had to balance potentially-
competing goals – support complex activities while still feeling lightweight. In my
personal usage of Catseye and in our user studies, developers wanted to be able
to jot down an otherwise throw-away thought about their implementation, bug, or
something else they discovered in order to offload some of the intense cognitive load
they were under. However, that in-the-moment need subsequently leads to more
work later through either culling or transforming this information. We do not want
to deter developers from generating information due to anxiety about later work,
given that this information can be useful. This tension between supporting in-situ
lightweight information generation and the subsequent work that lightweight infor-
mation may incur inspired our exploration of this design space.

A particularly interesting aspect of this design space is the explicit connection
between information scrap and document (i.e., annotation and anchor). Prior work
in lightweight note-taking and PIM highlighted the importance of information loca-
tion [21] and how that spatial component of, e.g., placing a sticky note with a grocery
list on the fridge can be particularly powerful in reminding and recalling informa-
tion. This connection between note and artifact has been less-explored in traditional
digital spaces due to the 2-dimensional nature of a desktop environment leading to
less “space” to work with and a lack of support for general-purpose user-facing cus-
tomization of digital spaces. With our re-anchoring work, we further explored how
this connection between information and source can be complicated in a dynamic
space, such as a text editor, where information is constantly changing. This leads to
questions of how to best retain the benefits of spatially organizing information when
the space is evolving over time – returning to our scenario shown in Figure 5.1, in
the case that the code is changed, our re-anchoring algorithm would correctly find
the most reasonable new anchor given content and location (Figure 5.4). However,
it is still unknown whether the annotation should persist at all – in the example sce-
nario, the user asks “where does this value come from?” about the class property
this._copyVscodeMetadata and, after the git pull, the class property is replaced
with a method call (this.getCopyMetaData()). Perhaps the addition of a function
call answered the user’s question as the call implies the “value” the user was re-
ferring to is returned from the function. However, an alternative scenario is that
the initial question is expressing confusion around the whole vscodeMetadata prop-
erty, in which case the question may stand. Given annotations’ typically terse nature
and the level of cognitive overload a user is typically experiencing when choosing
to write such a note, it is unreasonable to expect more exposition that would make
classifying these annotations possible. Some very recent work has explored using

78 Chapter 5. Curating Ephemeral Meta-Information with Catseye

LLMs to automatically and intelligently re-anchor annotations with some success,
but the approach is expensive and does not fully address the disconnect between
ambiguous annotation content and code [168]. In this prototype, we chose to keep
the human in the loop given this issue of text-versus-code ambiguity, but our next
work, Sodalite, explores additional mechanisms for highlighting text and code in-
consistencies with the goal of leveraging the anchoring relationship for document
maintenance.

Sodalite additionally builds upon the idea proposed with the batch processing
work, namely that annotations can serve as “building blocks” for larger, more cu-
rated documents. Merging annotations is one way of taking intermediary infor-
mation fragments and transforming them into a more shareable and comprehensive
form. Sodalite, similarly, allows the user to take locations within the source code and
write about them using its specialized mark-up system, but no longer “imports” an-
notations as a starting point. Sodalite was primarily focused on long-form document
maintenance, so leveraging and curating annotations was less relevant. Nonetheless,
given how LLMs have evolved since this work, generating documentation through
using annotations and their associated code may be a viable alternative to writing
documentation from scratch (Sodalite) or merging and editing annotation content
(Section 5.6.2).

A challenge in evaluating this type of work is curation can only really happen af-
ter a user has amassed a collection of information that necessitates curating. This is
the primary reason this work did not result in a published, stand-alone manuscript.
An ideal experiment set-up would allow us to evaluate the goals of our curation
work: taking a set of information amassed across time and making it useful and
comprehensible to both the original author and potential collaborators. A study
design that could investigate those requirements could include recruiting multiple
participants to create many annotations across a long period of time (i.e., a month
or more). After this period of time in the example study, participants would then be
instructed to go back and curate that set of information using our tooling. Lastly, we
could then evaluate whether that curated set of data helps a new developer better
comprehend some code as opposed to other baseline comparisons, , for example, a
“raw” set of annotations (what one would get in the old version of Catseye) versus
code comments or some other form of comprehension aid (e.g., documentation) ver-
sus no annotations nor other comprehension aid. However, this design introduces
multiple challenges. One challenge is that such a set up requires recruiting people
to create a realistic set of annotations across time and, if the participants choose not
to use the tool, the second part of the study would not work as there would be no
annotations to curate. Another challenge is establishing a baseline comparison point
– to make the proposed example study design work, a participant who created and
curated annotations would need to both share their code for the purposes of the
comprehension evaluation and would need to create multiple versions of their code,

5.7. Discussion and Future Work 79

including a version with code comments, no comments, and just their original an-
notations prior to the curation. In contrast to related work [124] where participants
perform online shopping (an activity anyone can perform on nearly any device, plat-
form, etc.), the problem domain we are working in is highly contextualized to an
individual developer’s work, making it more difficult to artificially create a sense-
making hand-off that is comparable to other sensemaking hand-offs. An alternative
study design could be more qualitative in nature and explore the practices develop-
ers naturally develop, if any, in curating their annotations, but such a study could
not make any claims about whether the curation process was actually helpful.

In pulling out lessons learned from this work, a key takeaway is:

• Time, anchoring, mutability, and provenance all inform relevance, which is
key. Previous chapters of this dissertation were largely focused on a singular
session in which meta-information is relevant. While this allowed us to ex-
plore the utility of the features Adamite and Catseye have and how they may
assist in developer sensemaking, they did not engage in the complexities that
day-to-day usage of an annotation system entails. This work sought to probe
on these complexities through looking at, broadly, how to manage annotations
across a long period of time, with respect to the anchor, how it changes given
document mutability, and how the relevance of the annotation is related to
these different factors, including its provenance. In taking into account all of
these different factors, a developer performing curation also has to consider
the audience – are they curating for their benefit in order to reduce clutter? Or,
curating to make something comprehensible for a later developer? Most anno-
tations that were deemed irrelevant were irrelevant given time passing, thus
potentially having no anchor due to the source changing, and the provenance
of the code, including the original intent, no longer being relevant. Distilling
all of these factors into a function for assessing relevance may be a path for-
ward for someone wanting to automatically curate a set of annotations.

The connection between document and information is particularly powerful in
immediately placing information in context and, through that context, natively sup-
porting the evolution of information over time. By abstracting this information onto
its own plane, separate yet connected to the source code, annotations can exist with-
out interfering with the “business logic” of the source code or development envi-
ronment. This is in contrast to other systems which change the overall structure of
the IDE [29] or interfere with the source code [247] in order to support spatial orien-
tation and connectivity between meta-information and code. The invisible binding
between source code and information that the re-anchoring work and, more broadly,
this thesis explores and highlights how developer’s rich and textured inner world of
tacit knowledge about code can be translated into meta-information and bound to
the code itself, given proper tooling.

81

Chapter 6

Sodalite: Meta-Information to
Support Documentation
Management

This chapter is adapted from my paper:

[106] Amber Horvath, Andrew Macvean, and Brad A. Myers. 2023. “Sup-
port for Long-Form Documentation Authoring and Maintenance”. In 2023
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
Washington, D.C., October 2-6, 2023. IEEE.

6.1 Overview

The connection between code and text written about code has long been studied and
explored. From literate programming [48, 125, 225], which has had a recent resur-
gence with the rise of Jupyter notebooks [121], to various forms of documentation [1,
45], there exists a tension between making code comprehensible through expressing
the design intent in a more naturalistic and human-readable form, while allowing for
the control that traditional programming languages provide. Our approach with So-
dalite1, sits at the intersection between these two approaches by allowing the source
code to be anchored to the corresponding written text that seeks to e.g., describe how
it functions, or how it came to be.

Once the text is anchored, this relationship can be utilized in new ways. While
Catseye and Adamite automatically attempted to update and repair any links be-
tween annotation and source text or code that appeared broken, this process some-
times failed and the annotation would be thrown away. This often occurred when
the original source document changed in such a way that there was no longer an
appropriate anchor location for the annotation, such as during a Git pull or if the

1Sodalite is a royal blue mineral and stands for Stories for On-boarding as Documentation
Authoring, Leveraging IDEs for Text Enahancements.

82 Chapter 6. Sodalite: Meta-Information to Support Documentation Management

API documentation changed between releases. While the fact that the annotation is
no longer anchored, thus, may no longer be appropriate for the author or a reader to
reference, the fact that it became un-anchored itself may be useful. For example, if I
have annotated an API method’s parameters with the specifics of my particular im-
plementation, it would be useful to know that, in the new release of the API, these
parameters no longer exist and my implementation will need to be changed. The
challenge of keeping code and documentation in sync with one another has been a
long-standing research problem [4, 212, 249].

This chapter explores utilizing the connection between code and text to overcome
longstanding barriers in documentation authoring and maintenance. By leverag-
ing code meta-information including the structure, existence, and location of code,
Sodalite is able to automatically determine the likelihood of the documentation be-
ing out-of-date given how well the system performs at re-attaching each code-text
pair to the code in the IDE. Sodalite also uses this meta-information to help the ini-
tial documentation author in writing their “code story” through suggesting code
patches to document, given the author’s already-documented code, and providing
templates for bootstrapping the authoring process. We expect this documentation
authoring and maintaining process to be particularly useful for developer teams or
open source projects, where the documentation and corresponding source code can
“live together”, with team-oriented documentation suffering from many of the same
barriers that end-user facing documentation does [113, 210], including out-of-date
information [210], while typically lacking a dedicated team or process for updating
the documentation [3, 53].

6.2 Background and Related Work

Prior work about writing software documentation have ranged from understanding
what information is in documentation [97, 158], what the problems are with that
information [3, 4, 35, 68, 143, 163, 180, 212, 214, 249], how software documentation is
authored [53, 222, 236], and automating documentation processes to offset authoring
costs and standardize the information present in documentation [2, 91]. Notably, the
majority of this documentation work is in the context of software documentation
for end users of a software library, e.g. API documentation [174]. Most relevant to
our work are studies about documentation created for other developers working on
the same code base, such as internal documentation about the code base [210, 222] or
a code tour for an open source repository [244], where the primary goal is to help
other developers understand and contribute to the code base. Our work expands
upon this work by contributing a system designed specifically to help create this
type of documentation, with a focus on combating some of the known issues in
authoring and maintaining this documentation including out-of-date information.

Once some software documentation is made, researchers have studied how de-
velopers maintain those documents and use that information. In studies of usage,

6.3. Sodalite 83

researchers have identified many problems of documentation that lead to the doc-
umentation being less trustworthy [153], including questions about how up-to-date
the information is [4, 143, 249] and completeness [212, 214]. A survey of develop-
ers at one company reported that they rarely updated documentation and that they
correctly assumed that documentation content is out-of-date [143]. One reason for
this lack of maintenance is that finding the appropriate places to update given a
change can be challenging, with developers reporting that they would value a tool
that helps identify those locations [76]. Our system attempts to reduce some of these
costs by having maintenance be a core design consideration by automatically locat-
ing and highlighting the out-of-date portions of the document given which code was
changed.

6.3 Sodalite

In order to use Sodalite, a user begins by opening the Sodalite webview [167] which
appears and functions like any other file in the editor (i.e., it can be dragged, resized,
closed, etc.). The user can then view the stories that have been associated with the
user’s currently-open GitHub repository or choose to author a new story (see Figure
6.1). When authoring a new story, the user will be presented with a rich text editor,
hereafter referred to as the “story editor” (in contrast to the “code editor”, which
refers to the Visual Studio Code IDE), and users can utilize code story templates and
code links. For already-authored code stories, the system performs its maintenance
algorithm to determine what code links are potentially invalid.

6.3.1 Templates

We included templates for stories to help guide authors about what should be doc-
umented (a common problem with documentation authoring is not knowing what
is important to document [53]) and to provide built-in mechanisms for allowing de-
velopers to find the right code and code-related information to include in the docu-
mentation.

We began by identifying various types of developer long-form writings that are
not adequately supported by current tooling and would benefit from leveraging the
context of the source code. We compiled this list through a combination of review-
ing literature and informally consulting with software engineers. For each of these
types, we developed a “template” which contains a list of headings, subheadings,
and guided instructions with prioritized code links (see Section 6.3.2), that would
most likely be included. This list includes:

• Overview documents, which serve to introduce a newcomer to a code base
[210, 244]. This template prioritizes higher-level information, including refer-
ences to functions and classes, with the assumption that developers most likely
do not want to cover lower-level specifics in an overview. “Overview” also

84 Chapter 6. Sodalite: Meta-Information to Support Documentation Management

FIGURE 6.1: The editor for authoring a story using Sodalite – this is a simplified and anonymous recre-
ation of P2’s story for demonstrative purposes. (1a) and (1b) show the relationship between the code
editor and the story editor – in this case, the user has clicked the code Link, prompting the suggestions
pane to show identifiers related to Link. (2) is the template list with the selected “Overview” template
highlighted. The “Code References” at (3) are represented in a list (4a, 5a, and 6a) and their locations
are shown in the story text at (4b), (5b), and (6b), respectively. The title of the story is (7).

prioritizes identifiers with certain keywords in their names that are commonly
associated with control flow in a web development project, such as “listen” or
“handle”, with the rationale that the logical flow of a project may be discussed
in an overview.

• Journal entries, which serve as logs about what a software engineer completed
in a workday and are sometimes required by management [157].

• Feature descriptions, in which a developer discusses what a particular part of
a code base does and is has been claimed to be one of the most important types
of documentation for developers [143].

• API descriptions, where a developer catalogs what they have learned about
an API to benefit later developers [104].

• Change logs, in which a developer enumerates parts of the code base that have
changed between releases of a software project [157], but, due to authoring
costs, can be incomplete [38].

Note that we are not claiming that this is an exhaustive list and our system allows
developers to define their own template if the built-in ones are not adequate by using
a predefined JavaScript object notation (JSON) structure that Sodalite reads. The
system also defaults to a “Blank” template, such that the user can define their own
structure without extending Sodalite.

6.3. Sodalite 85

6.3.2 Code Links and Suggestions

A key feature of Sodalite are code links, where the story references back to code. Links
can be made manually or using the “Suggestions” pane (see Figure 6.1-1b), which
lists code links that the author may include in their code story. Code links come in
three varieties:

• Identifier definitions, which link to where a specific code entity like a method
or variable is first defined. A user can create an identifier definition link by
selecting the “plus” button in the suggestions pane at the top right corner of
the code link box. Identifier definitions also include additional information
about the identifier, including places in which it is referenced, and other classes
or functions it references (see Figure 6.1-4a).

• Identifier references, which link to a specific instance in which a particular
identifier is referenced or used. An author can make an identifier reference by
selecting a reference that is listed in an identifier definition’s list of referenced
locations. Figure 6.1-5a shows a reference.

• Code ranges (see Figure 6.1-6a), which can be any arbitrary range of code that
the user has selected in the Visual Studio Code editor. Selected code in the code
editor will always appear at the top of the user’s “Suggestions” list, given that
selecting code is a strong signal that the user wants to include that code in
their story. Code ranges are fundamentally the same as the “code anchors”
that Catseye supports.

Code links can be added to a code story in two different ways. If the user has
no text selected in the story editor, the code link will either insert the name of the
identifier (identifier definitions and references) or the selected code (code range) at
the location of the user’s cursor. If the user has selected some text in their code
story, that text will be linked to their code (see Figure 6.1-4b, 5b and 6b). Either
way, clicking on a code link within the story editor will navigate to wherever that
particular code link is located in the code editor. Once a code link has been added
to a story, it will appear in a “Code References” list (Figure 6.1-3), such that the link
may be used elsewhere in the story.

Code links can also contain additional meta-data Sodalite was able to determine
about that part of the code. This includes, for the identifiers, where they are defined,
and referenced in different parts of the code. Once a code link has been included
in the code story the “Suggestions” pane will include other identifiers that were
commonly edited at the same time as that particular identifier. We identify these
“co-edits” by parsing the Git commit history for that particular identifier and count
when other identifiers appear in the same commit. In this way, we attempt to iden-
tify parts of code that are related but not in a way AST parsing would find.

Given these different types of code links, the “Suggestions” pane uses different
sources of information to populate its list. Sodalite examines both what the user

86 Chapter 6. Sodalite: Meta-Information to Support Documentation Management

FIGURE 6.2: How Sodalite appears after a story has been authored. (1) shows the hover text when a
code link is interacted with in the code editor. (2) is a code link that has been marked as “needs review”
given that the original code (shown in (3)) and the code in the editor (at (1)) are different. (4) are two
other collapsed code stories.

is doing in the story editor and what they are doing in the code editor. The infor-
mation the algorithm leverages from the story includes what references are already
included in the story and what the user has most recently typed. Identifiers related
to references already within the code story will be prioritized, as will identifiers that
match some part of the most recently-typed text. The system then complements that
information with what it knows about the user’s current location within the code,
including if the user is currently selecting an identifier, and, if so, what identifiers
are related to the selected identifier, along with other identifiers referenced in the
file and, if applicable, in the user’s currently selected scope. Some templates like the
“Change Log” prioritize certain types of code links (e.g., code links that have been
heavily edited), in which case the system favors those identifiers in the Suggestions
list. Identifiers that appear in multiple information sources are pushed to the top of
the list. To prevent the user from being overwhelmed with suggestions, we limit the
amount of suggestions to the top 10.

When a story is saved, Sodalite generates a JSON file in a system-generated
folder, which can be committed to the user’s Git repository and used by other pro-
grammers when they read or edit the source code. This JSON file is also used by the
system when determining what code links are out-of-date.

6.3.3 Support for Reading

Sodalite has some features designed specifically to help readers of code stories bet-
ter understand and utilize the documentation. A core feature of Sodalite for readers
of code stories is the fact that it is situated within the context of the code. Devel-
opers have previously stated they value source code and code comments more than
other types of documentation [232] – we hypothesize that bringing the type of infor-
mation typically in external documentation into the source code will allow for “the

6.3. Sodalite 87

best of both worlds” by staying within the developer’s working context while also
supporting longer-form text.

Another feature of Sodalite that we expect to help users of code stories are the
bi-directional nature of the code links. When some code has been linked in a story,
the code will be highlighted within the IDE, such that users of the code can discover
pertinent documentation that is relevant to that code (see Figure 6.2-1). The high-
lighted code brings up a hover text that shows a preview of the code story, including
the surrounding text from the story, the part of the story that is linked to the code
in bold, and the name and author of the story. If the surrounding story text con-
tains code links to other parts of the code, those links will navigate the user to the
code link’s location. If the user clicks on the link in the hover text, the Sodalite pane
will open and scroll to the correct part of the story. This does not interfere with the
regular links in Visual Studio Code’s hover text, which still work like normal.

Users of code stories are also presented with additional context about the origi-
nally authored story, to further help them validate what information is still relevant.
The story shows who authored the story, the date and what Git version the project
was on when the story was last authored or modified, and each code link in the
story displays additional metadata about what version of the code it was on when
authored, along with its original code content and context. This metadata comple-
ments the information the out-of-date system provides when the story is validated.

6.3.4 Support for Maintenance

Sodalite leverages being in the code editor and having access to Git versioning in-
formation to be able to mark parts of stories as “valid” (in which all code links are
valid), potentially “in need of review” (in which the system found a potential match
for the code link, but it is not positive – see Figure 6.2) or definitely “invalid” based
on how well the system is able to match the code references in the story to the code
currently in the user’s project in Visual Studio Code. There are situations in which
the documentation may go out-of-date that our system would not capture, but, in a
study of documentation problems, [4] found that most cases in which the documen-
tation went out-of-date was due to the code changing, so we focus on that case with
Sodalite.

On launch, Sodalite parses every code story file in the user’s current project and
builds an internal AST representation of the code in the project to compare the code
links against. We use the different types of code links to inform how to re-attach a
particular link and whether that attachment is valid or not.

For code anchors, given their flexible code structures (e.g., anything from a string
to a full multi-line expression), we begin by evaluating the most optimistic condi-
tion, in which nothing has changed, through checking whether the position we have
saved contains the same code as the code link. If not, we then look for whether
the code from the code link exists anywhere within the document. If that does not

88 Chapter 6. Sodalite: Meta-Information to Support Documentation Management

work, we use purely text-based matching mechanisms to discern candidate match-
ing points, since that was the most successful method used in [208]. We use AST in-
formation to restrict our search spaces, using a recursive function from most within
the last-known scope location.

In the case of multiple matches or no matches, we run our re-anchoring algo-
rithm, partially adapted from [208] and modified slightly from the algorithm dis-
cussed in Chapter 5 to account for the new types of code anchors. This algorithm
uses the last-known code content, the original location within the file, and the orig-
inal surrounding code (all of which are saved with each code link) to find the most
likely candidate code reference. We then weigh the probability that the location is
correct through a combination of calculating the edit-distance between the two ver-
sions, the edit-distance between the surrounding lines of code, and the difference
between the candidate line(s) of code and the original location, with a closer loca-
tion being weighted higher.

If there is a low score or no matches, we mark the anchor as invalid and the
corresponding text in the story as in need of review. To assist the author in finding
either a new location to link the story text to in the code or to discard the link, we
present additional metadata about what the code looked like and where it was last
located (see Figure 6.2-3, where it says “Showing original version below...”).

For definition references, the system searches the internal representation to see
whether the identifier is defined at its last known location. If the definition is not
there, the search will expand outwards to see if the identifier is defined in a different
file and, if so, attaches to that location, but marks the link as potentially invalid,
considering it may be a different identifier that just happens to have the same name.
If it is a local definition (e.g., a property named bar that is part of class Foo) the
system will check that both the class Foo and the property bar exist. If the system
cannot find a definition for the particular referenced code entity, the system uses the
text-and-location based re-anchoring algorithm. If the algorithm does not return a
result of a sufficiently highly-weighted likelihood, we mark the reference as invalid,
and the surrounding text within the code story as in need of review by the author.

A similar approach is used for checking identifier references in the code. We be-
gin by seeing whether there are one or more references in the code in the last-known
scope in which the reference was used. If there are multiple candidate matches, we
find the reference with the most similar AST path to the saved code anchor informa-
tion. If there are no candidate matches, we once again fall back on the text-matching
algorithm and, if the result is inadequate, mark the text within the story as poten-
tially invalid and in need of review.

By attempting to automate the process of re-matching the story content to the
corresponding code and suggesting potential edits to make, we attempt to lower the
workload for the author in maintaining the documentation. “Valid” code links have
no highlights. “In need-of-review” code links (shown in Figure 6.2-2) are highlighted
in yellow as a warning to readers. “Invalid” code links are highlighted in red to draw

6.4. Evaluation of Sodalite 89

attention to this part of the story. Like in our discussion of re-anchoring in Chapter 5
and letting an annotation author decide how or if at all to re-anchor their annotation,
we ultimately leave fixing code links through applying edits to the code story in the
hands of the developer. We chose to do so with a similar rationale to last chapter
– the point at which some documentation becomes out-of-date due to broken code
links is probably a good time to review the documentation and its content, given
that significant changes most likely occurred. Leaving the code links in their invalid
or in need of review states, we hypothesize, would motivate that reviewing process
by a developer.

6.4 Evaluation of Sodalite

6.4.1 Study Design

In order to assess the usability and usefulness of Sodalite, we ran a small user study
to test both the authoring and maintaining aspects of Sodalite. Participants were in-
structed to use Sodalite to document some code of their choosing. We then observed
them as they chose to document whatever information they saw fit.

To evaluate the maintenance features, participants took their documented code
and reverted to an older version of their code. We considered requiring participants
to document an old version of their code, but decided against this since we did not
want the study to become a test of how well the participants remembered their old
code and developers are not typically documenting their old code. Therefore, they
documented the current version, and we pretended that an old version was a newer
version.

Participants were instructed to look through their project’s GitHub history to
find a version that was many commits behind the version they documented and
involved edits to any files that they ended up documenting during the authoring
portion of the study. Upon finding an appropriate commit, participants checked out
that version of the code and re-ran Sodalite, which triggers the maintenance system
to try and find appropriate re-anchoring points. The first author and the participant
stepped through each code link within the stories to determine whether the system
chose the “correct” action, meaning the participant agreed with the system’s deter-
mination of whether the link was “valid”, in “need of review” or “invalid”. The full
set of study materials can be found in Appendix E,

We recruited 4 participants (3 men and 1 woman), hereafter referred to as P1
through P4, using study recruitment channels at our institution and advertisements
on Twitter. All participants were required to have some amount of experience using
JavaScript or TypeScript, to have a project written in one of those programming lan-
guages that they were willing to document, and to regularly use Visual Studio Code.
All sessions were conducted over video conferencing software and the sessions were

90 Chapter 6. Sodalite: Meta-Information to Support Documentation Management

recorded. Participants had, on average, 12.25 years of professional programming ex-
perience and considered themselves proficient in JavaScript and TypeScript.

For analyzing the authoring experience, we captured how many stories the par-
ticipants authored, how long each story was, what type of templates the partici-
pants used, how many code links they chose to include across how many files, and
what types of code links they were. We additionally reviewed the recorded videos
to count whenever the participant navigated through the document using the code
links, and counted whenever a participant copied and pasted or deleted a code link.
We additionally noted any usability issues participants discovered with the tool.

To assess how well Sodalite did at maintaining the code stories, we computed the
false positives, false negatives, true positives and true negatives for each code link
given the participant’s evaluation of whether or not Sodalite correctly re-attached
the code link. We additionally logged what the offset was from the code location
during the authoring session to the maintenance session, along with the total diff
between versions, and what type of re-attachment strategy the system used (e.g.,
text-based, AST based, etc.).

6.4.2 Study Results

All participants were able to successfully use Sodalite to author at least one code
story that utilized Sodalite’s features, and agreed with Sodalite’s re-attachment de-
cisions, on average, 86.5% of the time. We further discuss participants’ experience
using Sodalite’s authoring and maintenance features.

Authoring

The 4 participants authored, in total, 15 stories, with 2 participants each writing one
story, and the other 2 participants authoring 6 and 7 stories, respectively. On aver-
age, participant’s wrote 238 words (min = 136, max = 312, std. dev. = 75.4) during
the 45 minute authoring time. The participants in our study chose code repositories
of varying purposes, sizes and complexity to document. Participants, on average,
chose to document 3.25 files. Our participants chose to document a Google Chrome
extension, a Visual Studio Code extension, a browser game, and a personal website.

Across all stories, participants created 52 code links, with each participant, on
average, creating 13 (min = 11, max = 18, std. dev. = 3.36). 18 of the code links were
pointers to definitions of identifiers within their code2, 7 were identifier references,
and the remaining 27 were “code ranges”. In their stories, participants, on average
created 12.75 code links.

The code links were represented in different ways within the code story. 29 of
the 51 code links were attached to text in the code story that was just the name of the
identifier or the expression the user had selected. Notably, 18 of those 29 code links
were definitions of particular identifiers, where the story sought to explain some

2P1 made exclusively this type of code link, comprising 11 of the 18 total definitions.

6.4. Evaluation of Sodalite 91

detail about that identifier. The remaining 22 code links were attached to text that
was part of a sentence within their code story. This split in usages suggests that
supporting both of these ways of referring to code helped support different ways in
which participants wanted to talk about their code.

Participants sometimes used their code links to help them navigate through their
code, using, on average, 41% of their code links at least once to navigate through
their code (min = 0, max = .722). Participants would sometimes check, after includ-
ing a code link, where that link went as a way of assessing the reader experience.
P4, in particular, used the navigation features often, revisiting the majority of their
code links to review the other places in which the code was referenced and used
their links to navigate 13 different times across the session. This suggests that the
code links may be useful for navigating through a code base, even when authoring
documentation.

Maintaining

Sodalite made the correct decision of either re-attaching or not re-attaching 44 out
of the 52 code links, a success rate of 86.5%. Of the incorrect links, 7 were because
the system could not find an attachment point, despite there being one within the
code, and 1 was because the system erroneously found a location that it thought
was correct when it was not. The majority of cases were that Sodalite successfully
re-attached a code link, at 36 instances. Eight code links had changed in such a way
the system correctly marked them as needing review. The reversions averaged 100
lines of code lost (min = 53, max = 137, std. dev. = 38.92) and 49 lines of code added
(min = 3, max = 95, std. dev = 51.97) per file.

Sixteen of the correctly re-attached links were definitions, in which the re-attachment
strategy was to find a point within the file in which the named entity was defined.
Given the relative broadness of this strategy and the specificity of the named func-
tions or classes participants wanted to document, all but 2 definitions were able to
find an appropriate point somewhere in the document. This strategy may not work
as well if a method or class is renamed, but that did not happen to occur in any of
the participants’ versions. The reference re-attachment strategy also worked well,
with 8 of the 10 references being successfully re-attached in an appropriate location.

Perhaps more interestingly, the 8 cases that the system correctly marked for re-
view occurred in different situations, including when some code had been com-
mented out, the underlying semantics of the code changed significantly enough such
that the text in the story was no longer valid, and when the code links’ correspond-
ing definitions did not exist. One such instance is shown in Figure 6.2 in which the
original code link and surrounding text states that a value, hot, should be set to true.
However, the code in the version the user has opened has hot set to false. Two of the
cases occurred because the definitions for the linked methods did not exist in that
version of the code.

92 Chapter 6. Sodalite: Meta-Information to Support Documentation Management

The single false negative case, where Sodalite missed a change, also occurred us-
ing the text-based matching algorithm. The anchor was originally placed on an else

keyword, but, when the prior version was pulled in, the system placed the code an-
chor on a completely different instance of else. This other location was closer to
where the original link was and, since else is such a common keyword, the system
found multiple reasonable locations but selected the incorrect one. For identifier
references, Sodalite flags situations like this, but the system does not currently sup-
port that for keywords. Future versions of Sodalite would benefit from introducing
more heuristics about the context in which the code appears, including any logical
dependencies, such as an else statement’s corresponding if statement.

6.5 Discussion and Future Work

Our evaluation lends evidence to the claim that in-editor authoring and maintaining
of documentation can be supported with Sodalite. Participants succeeded in creat-
ing code stories and, when faced with changed code, the system was very successful
in identifying problematic references, and relatively successful in choosing the ap-
propriate action to take.

A current limitation of Sodalite is that all of the mechanisms for determining
whether or not the story is out-of-date are contingent upon the story including code
links. The expectation is that, given Sodalite being located within the IDE, devel-
opers will naturally utilize that context and reference their code within their code
stories. Indeed, all participants stated in the post-task survey that they valued the
ability to link their text to their code. Nonetheless, future versions of Sodalite may
benefit from additional mechanisms for assessing the validity of the text in compar-
ison to the code, for example, through leveraging crowd-sourcing mechanisms for
quality control [6, 53].

Another benefit of having even better mechanisms for identifying out-of-date
code stories is to notify documentation writers and/or developers when their story
has gone out-of-date. It is a known problem that updating documentation is a task
that developers typically put off – while Sodalite attempts to make updating easier
through marking places for review, the system does not require that the author take
any action. One can imagine an additional feature to Sodalite that allows stories to
be marked as “very important”, in which case developers could immediately be no-
tified if they make a breaking change, while lower priority stories can be addressed
on the developer’s “free” time.

In placing Sodalite in the broader context of the work discussed in this dis-
sertation, Sodalite serves as an interesting mid-point between the earlier and later
works discussed in this thesis. The system represented a change in mentality from
providing new ways of authoring programming-related meta-information and into

6.5. Discussion and Future Work 93

defining and understanding new ways of leveraging the connection between meta-
information and its source to support richer interactions and functionalities. Cats-
eye began by probing on that thread with its unification of functionalities given a
shared source location but was still largely contingent upon a developer beginning
by authoring some note and only after that point building upon it with more in-
formation. Similarly, the curation work discussed in Chapter 5 was also explored
with the assumption that a developer has some authored information. Sodalite still
requires the developer to author a code document, but leverages the anchor connec-
tion for new interactions and functionalities – in this way, we adopted a paradigm
and mindset shift: we previously fought against source mutability and subsequently
considered changing and broken anchors as a problem. Meanwhile, in this work, we
see a broken relationship as an opportunity to introduce error identification to lower
documentation maintenance costs. This approach largely relied upon the document
structure to make identifying those broken locations possible. The works after this
additionally derive value from the document structure such that code anchors can
store even more contextual meta-information automatically, as opposed to only after
some information has been authored.

95

Chapter 7

Meta-Manager: Meta-Information
for Question-Answering

This chapter is adapted from my paper:

[105] Amber Horvath, Andrew Macvean, and Brad A. Myers. “Meta-Manager:
A Tool for Collecting and Exploring Meta Information about Code”. In Pro-
ceedings of the CHI Conference on Human Factors in Computing Systems (CHI ’24),
May 11–16, 2024, Honolulu, HI, USA. Association for Computing Machinery,
2024.

7.1 Overview

When developing and understanding code, as previously discussed, developers are
managing many types of information that come in different forms. The previous
chapters explore how this information can be externalized and made more useful
through tooling approaches that leverage the context of the source code. However,
this externalization requires additional cognitive and physical effort by the initial
author [15, 34, 99, 124, 218], which can be a deterrent from using these types of tools.
Further, these tools also only capture what is expressly written by the developer,
which, while useful for capturing information that may exist only within the head
of the developer, can miss other interesting or useful contextual meta-information
that was created during the sensemaking [151, 152]. Nonetheless, information re-
lated to the history and implementation of code, while often not expressed by the
developer [147], is often useful in answering historically “hard-to-answer” ques-
tions about code, specifically those related to rationale [132, 138].

In this chapter, we explore capturing code editing and history information traces
at scale through an automatic, event-driven tooling approach. We isolated editing
events that we expected would help developers in answering some of these ques-
tions, such as copy-paste events to help with understanding where some code origi-
nated from and web search events and additional meta-information from web pages

96 Chapter 7. Meta-Manager: Meta-Information for Question-Answering

FIGURE 7.1: Meta-Manager as it appears within Visual Studio Code: the pane appears in the bottom
area of the editor, with the left area displaying a visualization of the history of the code file over time,
while the right area displays information about a particular code version.

including Stack Overflow and ChatGPT for answering why some code is written a
certain way.

We instantiated this event-driven code history and provenance model in our tool,
Meta-Manager. Meta-Manager translates this information into key events along a
code history timeline visualization that allows developers to explore how, when,
and where some code came to be. We focus on supporting later developers in answer-
ing questions related to code design rationale, along with code history, provenance,
and relationships, given that these questions are significant blockers for developers
maintaining code [132, 138, 159]. We specifically designed Meta-Manager with the
goal of not only supporting developers in answering these questions but also with
respect to dealing with challenges of scale (given the sheer amount of edits made
to code that may not be of interest but are nonetheless logged [7, 228]), navigation
(to support developers in finding the edits that are of interest), and unwritten design
rationale (given developers’ reticence to stop their work to document particular de-
cisions [151, 159], despite their generated information trail’s potential to be useful
[124, 153]). In our evaluation of Meta-Manager, we found participants were able to
successfully use it to answer otherwise unanswearble questions about an unfamilliar
code base’s history.

7.2 Overview of Meta-Manager

In order to capture code provenance, history, and rationale information at scale in
a manner that is navigable and informative, we developed Meta-Manager. We be-
gin our discussion by discussing what questions we believe Meta-Manager is well-
poised to answer, then show a user scenario on how that history may be generated
and used by a later developer to answer a question with Meta-Manager. We then dis-
cuss how each feature in Meta-Manager instantiates our design goals and addresses

7.2. Overview of Meta-Manager 97

significant questions developers have about code.

7.2.1 Developer Information Needs

In designing and creating Meta-Manager, we began by reviewing related literature
on information needs of developers when working with unfamiliar code [51, 63, 78,
113, 127, 138, 159, 178, 209, 210, 226]. As discussed in Chapter 2, this can happen
in many contexts, such as when adopting a code base after a coworker leaves [178,
209, 210] or when maintaining a large code base [78, 127, 138, 159, 226]. In reviewing
the literature, we were particularly interested in questions about the rationale behind
code’s design, given the lack of support for that information need [159], despite its
ubiquity and importance [138, 159]. Through our literature review, we identified the
following questions as related to code rationale and provenance, and as potentially
answerable through directly supporting developer’s sensemaking of code history
with tooling:

• History: How has this code changed over time? [63, 138, 159, 226] Developers
often try and understand the evolution of some code in service of answering
a question that is pertinent to their current task. For example, this may help
while investigating when a bug was introduced [229], finding when some code
was last used in service of understanding how a feature changed over time
[266], getting “up-to-speed” on a new code base [113], or finding a snippet of
code that was edited repeatedly to understand where the original developer
had issues [138, 147, 229]. Isolating when these particular changes happened
can be impossible in the case that the intermittent version is not logged in a
version control system (which is often the case in situations where a developer
is trying out multiple solutions), or very difficult to find even if there [119].

• Rationale: Why was this code written this way? [113, 127, 138, 159, 210,
226] A commonly-reported activity among developers when understanding
unfamiliar code is reasoning about why it is written the way that it is. This
information is typically only known by the original author during the time at
which the code was written and, if not written down (which is the majority of
cases [151, 159]), is lost. On the off chance it is recorded, it is most likely pre-
served in the form of a random Git commit message or code review comment
[193], which are often too difficult to forage through [233]. Developers have
stated that attempting to answer these questions are “exhausting” given the
lack of tooling support and reticence to ask co-workers [159], yet they must be
answered in order to understand design constraints and requirements which
will inform later implementation decisions.

• Relationships: What code is related to this code? [51, 78, 138, 226] Oftentimes,
when contributing a change to a code base, developers must reason about how
their new code is related to many other parts of the code beyond simply what

98 Chapter 7. Meta-Manager: Meta-Information for Question-Answering

could be found in a call graph. Other relationships that developers reason
about are what parts of the code are commonly edited together (the “work-
ing set” [27, 45]), and, if introducing a change or refactoring some code, what
other parts of the code must be updated. Developers also sometimes wonder
what solutions a previous developer already tried when introducing a change,
another otherwise untraceable relationship given that such prior solutions are
usually commented-out or deleted [138].

• Provenance: Where did this code come from? [78, 226] In 2021, Stack Over-
flow reported that one out of every four users who visit a Stack Overflow ques-
tion copy some code within five minutes of hitting the page, which totals over
40 million copies across over 7 million posts in the span of only two weeks
[200]. Given this ubiquity of online code and developers reliance upon it, re-
searchers have investigated the trustworthiness of code that is sourced from
online resources [12], ability to be adapted to a developer’s own working con-
text [277], and correctness of the code in terms of API usage, syntax, and so
on [239]. With the rise in LLMs for code generation, research is beginning to
focus on the quality of AI-generated code as well [55, 71, 123, 148, 150, 242, 267,
272]. Typically, it is not easy to see what code came from AI or from an online
source, versus what was written by developers themselves. While developers
occasionally add code comments that cite where some pasted code came from,
this does not happen very often [11] and, when it does happen, the links have
a tendency to break over time and recreating the context in which that code
was initially added and determining whether it is still valid is laborious [93].

It is also worth noting that all of these questions are phrased about “this code”,
which is the language used in the original research. This phrasing suggests that de-
velopers are typically discussing these questions at the snippet or block level [101],
as opposed to the file level, which is what typical version control systems operate
at. Our system differs by tracking code at the block level across files and supports
drilling down to a specific line or lines of code interactively.

7.2.2 Scenario

Ringo, a software engineer, is working on implementing a calendar widget into his
team’s scheduling software. Ringo is using an off-the-shelf React component that
provides most of the calendar widget’s functionality and visuals – yet, as he is imple-
menting some of the date verification, he notices that the returned time is incorrect.
He begins by searching Google for how the date verification API works, visits the docu-
mentation but does not find any useful code examples, then asks ChatGPT what is wrong
with his usage of the API and how to get the API to verify the date correctly. ChatGPT
provides him with a code example, which Ringo copy-pastes into the code base. Upon
re-running the code, he sees the snippet works and thinks nothing more of it. He,
then, pastes this code into the other parts of the project requiring date verification.

7.2. Overview of Meta-Manager 99

Many months later, Jeremiah, a software engineer who has recently joined this
project team, is working on one of his first pull requests. In doing so, he spends
time familiarizing himself with the code base by reading through the code. While
reading, Jeremiah notices an odd implementation choice – a particular function uses
an earlier version of an API’s method for checking the time of a calendar widget,
despite the current version of the calendar API being used elsewhere. Jeremiah is
not initially certain whether this confusing implementation decision is intentional
or not, as there is no documentation on this line of code, and, given this uncertainty,
he is reticent to change the code out of fear of some undocumented design criteria.
Jeremiah wonders “why is this code written this way?” and launches Meta-Manager to
investigate.

Jeremiah notices in the Meta-Manager pane that this particular file has many
hundreds of edits and, through the visualization, notices that the particular block
with the confusing code was introduced many edits ago. This suggests that Jeremiah’s
current teammates would most likely not know why this particular API method is
used. Thus, Jeremiah begins using the Meta-Manager by selecting the line of code
in question and searches backwards in time to see when this line of code was intro-
duced. When the Meta-Manager timeline updates with places in which the line was
edited, Jeremiah notices that the line was added with minimal subsequent edits and
its first appearance corresponds to a paste from ChatGPT. This tells Jeremiah that
the code has not evolved much over time suggesting that it was a solution that did not
require much tweaking by the author. Jeremiah inspects the code version by clicking on
the “ChatGPT” paste event. The ChatGPT code version has additional meta-information
including the original developer’s Google search and visited web pages which shows that
they were looking at the API documentation. The thread shows that they asked
ChatGPT for a code example that uses the API to verify a date and ChatGPT pro-
vided the code using the earlier API method. With this additional context provided
by Meta-Manager’s meta-information, Jeremiah now knows where this odd code came
from, as the older API usage was provided by ChatGPT, and why the code was written
the way it is – namely, to meet a specification that the newer version of the API does
not provide. With this information, Jeremiah no longer needs to ask his teammates
about the usage of the old API and feels comfortable leaving it as is – he adds a
code comment to the line stating that this line should be updated if the calendar API
updates with new date-checking functions.

Jeremiah, lastly, wants to see if there are any other parts of the code using the
older version of the API, such that he can similarly mark those parts of the code for
updating. In order to find any code related to his current code, he looks to see whether
this code has been copied and pasted anywhere, and finds that the code was copied
and pasted 4 times across history. When looking at those copy events, he navigates
to the corresponding pastes and sees that 2 of the 4 pastes no longer exist. For the
remaining pastes, he adds a code comment stating the lines should be updated.

100 Chapter 7. Meta-Manager: Meta-Information for Question-Answering

7.2.3 Detailed Meta-Manager Design

We now discuss features (labelled with “F” below) of Meta-Manager in terms of its
design goals (“D”), and how these features support answering the history and ratio-
nale questions about code we have identified in our prior literature review (Section
7.2.1).

[D1] Automatic Code History and Provenance Data

We developed Meta-Manager to support better navigation and sensemaking of code
history through a scalable and visualized history view (see Figure 7.1). Meta-Manager
supports automated history and provenance data through its organization of data
and its history model ([F1]), along with extending its historical data capturing out-
side of the IDE ([F2]).

[F1] Data Organization. On system launch, Meta-Manager creates an index of
the entire code project by traversing through each file and creating an abstract syntax
tree (AST) representation of each TypeScript or JavaScript file and, if Meta-Manager
has been used with the code project previously, searching the Meta-Manager database
to find what code blocks in the current project correspond to the code blocks saved
in the database history. In the case that the block does not exist in the database,
Meta-Manager will begin tracking its history1.

We chose to track code history at the block-level, as opposed to the file level,
in order to better align with developers’ mental models of code [100] and given
that our supported questions are often asked at the block or snippet level. This
approach also complements our design goals of combating scale, considering each
code block is in charge of its own history, meaning code versions are only captured
when a block has changed. By deconstructing the versioning space to each code
block and allowing each code block to manage its own history, we can support more
fine-grained answering of questions related to history and provenance.

In order for Meta-Manager to begin logging code versions, the user does not
need to take any actions beyond installing the extensions. On each file save, Meta-
Manager will log a new version and perform an audit of the file to see if there are
any new blocks of code to track. To investigate the code history, the developer can
navigate to the “Meta Manager” tab in the bottom area of the editor — doing so
will render the edit history of the user’s currently-open file. Whenever the user
opens a file, the Meta-Manager will render that particular file’s history. Each code
block’s history appears both within the visualization as a colored stream (Figure 7.1-
5) and, given the location of the scrubber (Figure 7.1-1) along the timeline, a code
box version (Figure 7.1-8) is shown that represents that particular code block at that
point in time.

1For a more comprehensive discussion on how the Meta-Manager node tracking works, see Ap-
pendix A.

7.2. Overview of Meta-Manager 101

FIGURE 7.2: How the code box looks when expanded to show a code version – in this case, a “Paste”
event version. (1) shows the buttons specific to a “Paste” code version, including the“See Copy” button
which will navigate the user to the corresponding copy event on the timeline (if the copy happened in
a different file, then the code box will update with a preview of how the code in the other file looked at
the time of the copy, which can be clicked on to change to that file); (2) shows the text explaining what
happened with this particular paste event — clicking in this area will open the editor tab showing
what the code file looks like now; (3) shows the code for this version, along with a light blue highlight
on the code that was pasted.

[F2] Development Traces Online and in-IDE. Meta-Manager tracks code-related
development events within the IDE and online. For certain events, additional meta-
information will be shown on those particular code versions with additional affor-
dances. For example, in Figure 7.2, this particular version of the method getConfig

had a paste event, where the user pasted in the code on line 6. The version adds
additional information such as where that copy came from (in this case, the file “src-
extension.ts”) and buttons for relevant actions, such as seeing the original copied
code (Figure 7.2-1).

In cases where code was pasted from an online source, Meta-Manager will pro-
vide additional meta-information about the web page that the code was pasted from,
and, if available, what the original user was attempting to do. Meta-Manager’s sup-
plementary browser extension is designed to work with some popular programming
learning resources, including Stack Overflow, GitHub, and ChatGPT2. If the browser
extension detects that the user is on one of these web pages, it will extract website-
specific information (e.g., the name of a ChatGPT thread) and listen for copy events.
If the Visual Studio Code extension detects a paste which matches the content of the
browser extension’s copy, this additional information will be transmitted to the Vi-
sual Studio Code extension to be associated with that paste. The hypothesis is that
the query text can be a good signal of the developer’s original intent for the code,
which has been supported by prior work [124, 153] and our observations.

2We envision this list being substantially expanded to include other commonly-used resources
where code is copied from, such as the official documentation for languages and APIs.

102 Chapter 7. Meta-Manager: Meta-Information for Question-Answering

Similarly, if the user makes a programming-related Google search3 prior to vis-
iting these websites, their initial query and visited web pages will be included with
the meta-information about the pasted code (Figure 7.1-10). Clicking the “See More”
button will pull up a preview of the web page in the Meta-Manager pane of the edi-
tor, and highlight the part of the code on the web page from where it was copied.

Through automatically capturing this development context that would be too la-
borious to capture manually, we hypothesize that these pieces of information, when
combined and contextualized to when the edit happened, can help developers rea-
son about the rationale behind a change and the relevant provenance. These features
work in conjunction with our data model, which allows each block to track this
information. A problem with other methods for keeping track of provenance infor-
mation, such as code comments that contain links to where some code came from,
is that the information can go out-of-date, either in the case the link breaks or the
code changes enough such that the code comment is no longer accurate [93]. By
having this information versioned, we give the developer the tools to reason about
this rationale across time.

[D2] Scalability.

Given the sheer amount of information we are tracking with Meta-Manager, Meta-
Manager is designed to support managing large amounts of information. We do
this in multiple ways – both collapsing information into a visual representation ([F3],
[F5]) and prioritizing different types of information ([F4]).

[F3] Visualization. The chosen visualization, linked to our data model ([F1]), al-
lows each block to manage and display its history effectively. The x-axis represents
edits, while the y-axis corresponds to file line count, collapsing all edits to illustrate
block changes over time. For example, in Figure 7.1, the dark blue stream repre-
sents the activate function. In the case of nested blocks (e.g., a method within a
class), the colors in the visualization will overlap, such as the violet area on the chart
covering the dark blue. At the scrubber’s version, the activate function grows by
approximately 20 lines, reflecting a paste event from “ChatGPT”, suggesting to a
user that ChatGPT provided a significant contribution at this time. In this way, the
visualization itself can serve to answer some questions about the code’s history on
its own. The visualization also contextualizes the annotated timeline of events (see
Section 7.2.3-[F7]).

[F4] Significant Edit Events. Meta-Manager manages scale by prioritizing cer-
tain versions over others. Each code block listens for specific edit events that occur
during its history, such that these events may be annotated along the timeline (Sec-
tion 7.2.3-[F7]). Edit events of interest include copy-paste events, both from online

3We consider a programming-related Google search to be one in which popular programming-
related websites appear in the search result list. We acknowledge the potential privacy problems with
this feature, and consider the current prototype to mainly be an evaluation of the advantages of doing
this, and expect that a more complete tool can provide more control over what is saved from the
browser, as in [153].

7.2. Overview of Meta-Manager 103

and from within the IDE, block commenting code, and, given a specific code snip-
pet, when that snippet was edited, added or deleted. When these particular edit
types happen, additional meta-information will be captured and shown on the code
version, as is the case for the version in Figure 7.1-10 which shows where the code
came from, what the user was doing online, who performed the edit, and when it
occurred. This meta-information will change given the type of edit (see Figure 7.2
for an example of an in-IDE paste event).

We hypothesize that these edit events will be useful to later developers due to
the diverse meta-information they generate, aligning with our earlier discussions
on developer information needs. As discussed in Section 7.2.3-[F2], web activities of
developers can elucidate code design rationale when viewed alongside code version-
ing. Within the IDE, copy-pasting aids in understanding hidden code relationships
between the original and pasted sections, assisting in tracking code provenance. Block
commenting reflects developers exploring different solutions or altering implemen-
tation, a code relationship typically challenging to trace.

[F5] Zoom and Filter. Another feature Meta-Manager provides to manage scale
is through directly interacting with the visualization to reduce the history-space
through zooming. Since the number of code versions will increase over time, Meta-
Manager allows developers to zoom in to parts of the visualization that they find
particularly interesting. The visualization will update to show a slice of the editing
history (Figure 7.3), which can be dismissed with a “Reset” button. Users can also
filter the timeline representation to only show specific edit events in order to further
reduce the search space.

[D3] Support Navigation.

In order for the code history to actually be useful for question-answering, devel-
opers must be able to find the relevant information pieces in service of their ques-
tions. Meta-Manager presents this information as code versions that contain meta-
information and supports finding these versions through multiple ways.

[F6] Search. Meta-Manager supports searching by both content and by code ver-
sions across time. Users can search across time using either code that they have
selected in their current code version (Figure 7.2-1, “Search for Selected Code”) or
directly through the code editor by selecting some code in their file, then using the
context menu to select “Meta Manager: Search for Code Across Time”. These two
searches differ slightly from one another, in that the search using the code box will
search forwards in time from the specific code version, while the search from the code
editor will search backwards in time (since the editor always shows the current ver-
sion of the code). Both searches utilize the edit history by modifying the query given
how the code changes across each version. This means that the search will attempt
to expand if the selection grows, shrink if the selection shrinks, and update the code
query content to match on given variable names and other constructs changing over
time.

104 Chapter 7. Meta-Manager: Meta-Information for Question-Answering

When a search is performed, the timeline will update with events marked “Search
Result” for events affecting the specified code, where the code differs in some way
from the previous version. This is to prevent the search results from being flooded
with events where the code is exactly the same, but has moved as a result of other
code above it being edited. When looking at a search result code version, the part of
the code that matched the user’s query will be highlighted in orange. The search will
also detect significant edits made to the code. This includes when the searched-upon
code is initially added, removed, commented out, or commented back in. These
events are specifically marked on the timeline with a label corresponding to the type
of edit. Searching by content works similarly in that the user can type a query into
the search box (Figure 7.2-6) and each code version which includes the searched-
upon string will be annotated on the timeline. Searching is fundamental for finding
a version that may answer questions of rationale, provenance, or history.

[F7] Annotated Timeline. Meta-Manager leverages the listened-for significant
editing events of interest (Section 7.2.3-[F4]) by annotating these events along the
visualization’s timeline (see Figure 7.1-4). Clicking on these annotations will navi-
gate the user to that particular code version, further reducing the amount of code
versions a user needs to look at in order to find potentially useful information, given
our hypothesized information needs that will be met with the meta-information cap-
tured during these editing events. The timeline will also be annotated with versions
to look at when a user performs a search (Section 7.2.3-[F6]). A large barrier to mak-
ing sense of code history is the challenge of searching through large histories [233].
Meta-Manager attempts to mitigate this barrier through pulling out the most inter-
esting versions using both its data and history model and through leveraging the
user’s interest given a search query.

[F8] Scrubbing. Within Meta-Manager, users can scrub through code versions
(Figure 7.1-1). The scrubbing functionality serves multiple purposes: enabling move-
ment between un-annotated versions along the timeline and providing a quick over-
view of code changes over time. When the code box is expanded and the user is
scrubbing, the code will update for each version. This view complements the vi-
sualization’s high-level representation of history with its lower-level code history
representation and supports varied speeds of historical sensemaking, akin to how a
user can scrub through, e.g., a YouTube video and speed up or slow down for tar-
geted viewing. Users can comprehend the code history at different levels, aligning
with where they are in their sensemaking journey.

We hypothesize that supporting search both by content and across time will help
with further bridging the connection between the user’s current working context
and the history of the code. By supporting this more micro-level investigation, in
conjunction with the more macro-level scrubbing and visualization mechanisms for
understanding history, users of Meta-Manager can answer their questions at varying
levels of granularity.

7.2. Overview of Meta-Manager 105

FIGURE 7.3: A zoomed-in portion of the timeline shown in Figure 7.1. This zoomed-in portion shows
around 120 edits between Version 710 and Version 830, with the scrubber set around Version 740, when
a user pasted code from Stack Overflow.

7.2.4 Implementation

The Meta-Manager, both the Visual Studio Code editor extension and supplemen-
tary browser extension, utilize TypeScript for the logic and React [69] (with D3.js
[181] for the chart in the Visual Studio Code extension) for the front end. FireStore
[61] is used for authenticating the user, establishing a shared connection between the
browser extension and Visual Studio Code extension, and logging the code revisions
and metadata in the Meta-Manager database.

The code logging in the editor works by utilizing the TypeScript abstract syntax
tree (AST) on system launch to parse each file in the user’s currently-open reposi-
tory. The system then attempts to match each block within the parsed-AST to known
code entities stored in the database. This matching is similar to the re-anchoring al-
gorithm discussed in Chapter 5 and Chapter 6, while leveraging new information
afforded to us by the logging of the code to the database. The algorithm uses a va-
riety of heuristics including text-matching using the “bag of words” approach dis-
cussed in [261]., the last-logged structure of the AST (such that known relationships
between blocks are prioritized), the user’s current Git commit and the logged ver-
sions’ commits, and the line difference between blocks. In the case that a block in the
history is not found in the current version, we consider it deleted, and, to cut down
on superfluous versions, do not pull in its history4. If an unknown node is found in
the current code AST, we assume it is newly created and begin tracking its history.
We additionally listen for any document change events to capture whether or not a
new block is added or removed to begin tracking or stop tracking the node’s history.
Each node within the system subsequently manages its own version history and the
events that happen to it, such that users can drill down even further to see, e.g.,

4Note that, given the nested structure of the AST, if a missing node’s parent is present in the user’s
code, the user can still see the missing code in the parent’s version history and query upon it, if they
want.

106 Chapter 7. Meta-Manager: Meta-Information for Question-Answering

when a particular code block was introduced or removed. While the user is editing
their code, each node keeps what we call a “change buffer” of edits that happen to
the node, with each edit parsed to determine whether it is an edit of interest, such
as a paste event or a block code comment. In the case of a copy, the system identi-
fies which node experienced the copy such that a connection between the respective
versions can be made between that node and the node that receives the paste event,
even though the copy event itself doesn’t actually change the code.

For a more comprehensive discussion of the Meta-Manager architecture and data
model, please see Appendix A.

7.3 Lab Study

In order to assess how well Meta-Manager performs in helping developers answer
historically “hard-to-answer” questions about code history, we ran a small user
study. Participants were tasked with using Meta-Manager to explore an unfamil-
iar code base while using the system to answer questions we asked them about the
history of the code, without modifying or running the code. We chose to have a
single condition (as opposed to a between or within subjects study design) in which
participants used the tool since the questions we asked participants would, with-
out the tool, be unanswerable, meaning there is no real control condition we could
grade the experimental condition against. This was done deliberately considering
we specifically designed our tool to support answering these types of questions.
Thus, ensuring that the tool succeeded in that regard was our primary goal of the
study, along with assessing the usability and utility of the tool.

The lab study consisted of a tutorial with Meta-Manager in which the exper-
imenter and participant walked through each feature. Then, the participant and
experimenter walked through different parts of the code base and the participant
would use Meta-Manager to try and answer each of 8 questions (Table 7.1). Once the
participant answered each question, the study ended with a survey to capture partic-
ipant demographic information, along with their experience using Meta-Manager,
and their own history in attempting to answer the types of questions Meta-Manager
is designed to help with answering. For the full set of study materials, see Appendix
F.

7.3.1 Method

Code History Creation

Given that Meta-Manager has not existed long enough to naturally accrue a history
log that would be in line with real, prolonged use of the tool, a code history was
artificially created. We did this because we did not want to bias the study in favor
of the tool purely because there are a small amount of code versions, thus finding an
answer to a question is trivial. The artificial code base is based upon a real code base

7.3. Lab Study 107

[234] for a Visual Studio Code extension created by an external group unaffiliated
with Meta-Manager, which functions similarly to CoPilot. This repository was cho-
sen due to the fact that much of the code centers around the Visual Studio Code API,
which few developers are familiar with, thus lowering the likelihood of a participant
performing well purely due to having more background knowledge in the domain.

Our methodology draws from prior approaches that similarly explored devel-
oper sensemaking of code history by using a variety of online sources along with the
the experimenter’s rewriting of the code to create the synthetic code base [120]. Code
sourced from different online sources ensures that the code base is unbiased since it
does not just use code sourced from one individual who has one implementation
style. To create the artificial edits, the first author independently rewrote the code
base, following along with the Git commit history in order to capture “real” versions
of the code. While writing the code present in each commit, the tool was logging
these real versions, but was also recording individual edits (e.g., add 1 line that says
const searchResults = match(searchResults); in file search.ts on commit 4acb)
that were then artificially inserted at realistic intervals across each code’s history,
given the correct file, time period, and node. The first author intentionally did not
write “perfect” code that matched what was in each commit, to account for the more
realistic intermittent versions the tool would capture in real usage. The author also
intentionally added events that we are particularly interested in investigating, such
as copy-pastes, across each file’s history, along with simulated copy-paste events
that match the frequency reported in prior literature on how often developers copy-
paste during a normal programming session [109]. We also added realistic copy and
pastes from Stack Overflow and a few from ChatGPT (even though the code was
actually written before ChatGPT was available) since these will be increasingly im-
portant, with these events occurring less frequently than within-editor copy-pastes.
To further validate the realism of the code, we followed the same approach as [107]
and asked participants how similar the code was to code they had seen in their own
work, with participants reporting the code is, on average, similar to code they have
encountered before5. Using this technique, we generated a code base consisting of
5,661 edits in 1,328 lines of code across 10 files and 28 different code blocks.

Tutorial

The study session began with the experimenter showing the participant how to use
each feature in Meta-Manager. This included an explanation of the visualization
(including how to zoom in to the visualization), how to use the scrubber to move
through the code versions, how to search from both within the code editor and
within a code box, how to filter to view only copy events, paste events, or paste
events from online, and how to view each corresponding copy and paste between
code versions. This tutorial was done in one of the files within the created code base,

5average = 3.8 out of 5, using a 1-to-5 point Likert scale from very dissimilar to very similar

108 Chapter 7. Meta-Manager: Meta-Information for Question-Answering

such that the participant could see and understand the context of the code base, but
none of the code history task questions related to anything in that particular file.

Task

Our main task draws from similar related work [58, 120] in that each participant
was required to use Meta-Manager to answer 8 questions. Each question was de-
signed such that it would represent at least one information need we are interested
in (see Section 7.2.1) and would require the participant to use some feature of Meta-
Manager to answer. Questions also required the participant to perform multiple
steps using the tool, such that they would be non-trivial to answer and would rep-
resent the more realistic case of using a tool like Meta-Manager, where the full “an-
swer” is multi-faceted and comprised of multiple information pieces. For example,
question Q1 asks both what string a regex is matching on and why – “what” refers
to the implementation of the regex and is requisite knowledge in order to make a
change to the code, while “why” represents the rationale behind the current design
and is information that can be used to reason about how a new version should be
designed in order to adhere to the original design constraints, goals, and specifica-
tions. Table 7.1 lists each question, along with the steps a participant could do in
Meta-Manager to answer the question. The solution in the table represents the most
efficient way to answer a question, but each question can be answered using other
methods. For example, for question Q6, a participant can choose to search forwards
in time on the AI generated code, which will pull out instances where that code
changed, but they can also scrub through the code versions using the scrubber up
to the present to visually see how the code is edited over time. Participants had 10
minutes per question and were not allowed to edit or run the code, or search for
information online. When a participant felt they had come to an answer, they were
instructed to state their answer and they would move on to the next question.

Questions 1 and 2 were in a file with 90 versions, Question 3 and 4 were in a
file with 619 versions, Question 5 was in a file with 727 versions, and questions 6
through 8 were in a file with 1,302 versions.

Analysis

For each participant, we recorded whether or not they got the correct answer for
each question and how long it took them to come to the answer. “Correctness”
was determined objectively by whether or not they found the correct code or code
version that contained the answer and whether the participant’s summation of what
they learned was accurate. If a participant got only part of a question right, such
as understanding in Q1 what the regex is matching on but not understanding why,
the question was still marked as incorrect. If the participant did not finish within 10
minutes, the question was marked as incorrect. We additionally reviewed the video

7.3. Lab Study 109

Question in Task Info. Need (Sec.
7.2.1)

Solution Outcome Avg. Time Spent If
Correct

Q1. In config.ts, there is a regex for
search pattern matching. Can you
tell me what it is matching on and
why?

Rationale Find paste from ChatGPT, read
user’s ChatGPT query

6 correct, 1 incorrect 3:28 (min: 0:58, max:
6:32, std. dev.: 1:59)

Q2. There is a bug in the
commented out Promise code.
Can you find where the bug was
and what happened?

History Find where Promise was initially
commented out, where Promise
came from, and look at versions
before that event

4 correct, 3
out-of-time

5:04 (min: 1:58, max:
7:02, std. dev.: 2:24)

Q3. Prior to using parseHTML, the
author was using a different API -
what was it and why did they stop
using it?

Rationale Search to when parseHTML no
longer exists, see what code was
there before, and see Stack
Overflow post

7 correct 4:35 (min: 2:23, max:
7:38, std. dev.: 1:46)

Q4. Recently, some code was
added to search that came from a
different file – can you find that
code and explain what changed?

Provenance Filter to see pasted code, find paste
event with code copied from a
different file, then search for that
code in the file

7 correct 4:47 (min: 2:00, max:
8:08, std. dev.: 2:29)

Q5. Look at lines 68 to 70 – there is
a commented out forEach loop.
Can you find the last time it was
used and explain why it was
removed and what it was replaced
with?

Relationships Search on commented out code,
click on “Commented Out” event,
find Stack Overflow post near
event with replacement code

7 correct 4:24 (min: 1:57, max:
7:12, std. dev.: 1:44)

Q6. What code was generated by
an AI system and what ended up
happening to it?

History Filter to see ChatGPT code, then
search forwards in time on that
code

5 correct, 2
out-of-time

6:36 (min: 2:02, max:
9:15, std. dev.: 1:53)

Q7. What were all the different
things that the programmer tried
when setting the match variable?

History Search backwards in time on
match, look at events

5 correct, 2 incorrect 5:18 (min: 2:15, max:
8:17, std. dev.: 2:15)

Q8. Some code from activate
was moved into a different file.
When did this happen and what
was the code that was moved?

Provenance Filter to code copied in activate,
then see corresponding paste
locations

7 correct 3:42 (min: 1:14, max:
8:35, std. dev.: 2:17)

TABLE 7.1: Each question that was asked during the task, along with what information need from
prior literature it corresponds to, the steps that could be taken in Meta-Manager to answer the question,
and how participants performed on the question in terms of correctness and time spent (in minutes).
Note that some questions represent more than one information need, such as Q5, which both asks
what code is related to the commented out loop, but also why the loop was commented out, which is
a rationale question.

recordings to see what features of the tool and strategies participants used when
coming to an answer.

7.3.2 Participants

We recruited 7 participants (6 men, 1 woman) using study recruitment channels at
our institution, along with advertisements on our social networks. All of the partic-
ipants were required to have some amount of experience using TypeScript and be
familliar with Visual Studio Code. Participant occupations included 4 professional
software engineers, 2 researchers, and a financial operations engineer with a com-
puter science background. The average amount of years of professional software
engineering was 3.16, self-reported competency with JavaScript was 4.5 (out of 7,
where 7 is expert), and an average self-reported competency score of 3 for Type-
Script. All study sessions were completed and recorded using Zoom and partici-
pants used Zoom to take remote control of the experimenter’s computer in order to
use the tool. Participants were compensated $25 for completing the study and the
study was approved by our institution’s Institutional Review Board. Participants 1
through 7 are hereafter referred to as P1 through P7.

110 Chapter 7. Meta-Manager: Meta-Information for Question-Answering

7.3.3 Quantitative Results

Participants, on average, were able to correctly answer their questions 85.7% of the
time (48 out of 56), and averaged 4 minutes and 52 seconds per question. No par-
ticipant got every answer correct, and all participants got at least 6 answers correct.
Of the 8 failed questions, 5 occurred because the participant ran out of time, and 3
occurred because the participant came to the wrong answer.

Table 7.1 shows question outcome and how long, on average, getting the correct
answer to the question took. Questions 3, 4, 5, and 8 were answered correctly by
all participants and did not take relatively long to solve. Participants also solved
these questions in the most consistent manner, with all participants starting with
the same first step that was outlined in Table 7.1 as the intended solution path. No-
tably, these questions correspond to 3 of the 4 types of hard-to-answer questions
discussed in Section 7.2.1, suggesting that the tool was successful in supporting ra-
tionale, provenance, and relationship needs. Participant’s success with answering
provenance questions supports our hypothesis that copy-paste data can help with
reasoning about where and how some code came to be. Additionally, in our post-
task survey, participants rated Q5 as the most similar to frequently asked questions
they have, suggesting that our tool’s ability to support finding relationship and ra-
tionale information is particularly valuable.

In the post-task survey, participants reacted favorably to Meta-Manager. Partic-
ipants agreed that they would find Meta-Manager useful for their daily work (avg.
6.14 out of 7, with 7 being “strongly agree”) and enjoyed the features provided by
Meta-Manager (avg. 6.57 out of 7). Participants particularly liked the ability to see
where code from online came from within the context of the IDE as a way to see what
the original developer was doing, with one participant stating that they imagined
that this will be how they spend “most of their development time in the future, with
more code coming from AI” (P7). This, along with participants overall success on
Q1, supports our hypothesis that reasoning about rationale can be supported using
information traces from AI code-generation tools and related web activity. Partici-
pants desired improvements to the user interface to make some of their interactions
a bit more clear (avg., 4.3 out of 7), especially with respect to the interaction between
the filter, search, and zoom operations. Participants sometimes lost track of what
filters they had in place when searching, and vice versa, which caused confusion.
Adopting the UI for sorting and filtering from popular shopping websites might
help alleviate these problems.

We additionally asked participants to rate each question asked in the study by
how often they have encountered similar questions in their own programming ex-
periences on a 5-point scale from “never ask” to “always ask” (Figure 7.4). Partic-
ipants reported asking questions similar to Q5, which asked about why some code
was introduced to replace some other code, most often, with 4 participants stating
they “always ask” questions like this. Notably, that is also one of the questions all
participants were successfully able to answer, which suggests the tool is useful in

7.3. Lab Study 111

FIGURE 7.4: Each question scored by participants in terms of how often they encounter similar ques-
tions in their own programming experiences.

answering this type of common, hard-to-answer question. Only two questions had
some participants state they never asked that question, which were the questions
corresponding to reasoning about where some code originated from (an AI system,
in this case) and what the previous developer had tried when implementing some
change. All questions had at least one participant say that they sometimes ask that
question, which is both inline with prior research and contributes additional evi-
dence that tooling to answer these questions is valuable.

7.3.4 Qualitative Results

We now explore participants’ qualitative experiences using Meta-Manager in terms
of how they used its features to answer each question with respect to Meta-Manager’s
design goals.

[D1] Automatic Code History and Provenance Data

Participants, overall, enjoyed having access to the code-related history and prove-
nance data, especially in the case of code sourced from online. 6 out of 7 participants
explicitly stated in the post-task survey that they valued Meta-Manager’s ability to
capture what code was sourced from online sources, especially ChatGPT, and that
these events were explicitly called out on the timeline and filterable. This preference
also manifested in their question-answering strategies with participants commonly
defaulting to clicking on any event annotation that came from online, especially if
they were stumped on what to do to answer a question. P4 clearly articulated this
strategy by saying, after using ChatGPT to solve Q1 and why a regex was written
this way, “I’m looking at ChatGPT because that worked well last time.” Other par-
ticipants did not immediately understand that the web-based pastes contained ad-
ditional meta-information that could help with reasoning about “why” some code
is the way it is – P3, in attempting to answer Q3, did not look at the Stack Over-
flow code version which has a Google query explaining why the user switched API
methods, and, instead, brute-force searched through the surrounding code versions

112 Chapter 7. Meta-Manager: Meta-Information for Question-Answering

and correctly reasoned that the API methods were swapped due to an asynchronous
issue given some type changes made between versions. While this strategy was suc-
cessful in this case, their usage suggests that some users may not see the connection
between web-activity and rationale for changes, suggesting that further highlight-
ing the most pertinent “information cues” from these versions (e.g., Stack Overflow
question titles) in the user interface, either through the timeline annotation text or
within the version itself, may better serve to highlight the significance of the web
activity.

[D2] Make Information Scalable

In terms of managing the sheer scale of the version space participants were operating
in, the combination of the visualization, zooming, and filtering worked together well
to isolate “sub-histories” of the history to explore. A common strategy in answering
history and provenance-based questions, used by 4 participants 12 times, was to
use the annotated timeline labels as a boundary for a search space, then “zoom”
into this space to look at the intermediate versions. For example, P3, in order to
answer Q2, used the visualization to identify that there was a large growth in the
code base at the end of the history and there was pasted code added at that time –
he then zoomed into the end part of the history at the first instance of pasted code
when the lines of code grew in order to reason about how the code changed after the
addition of it and prior to it being commented out. In this way, participants were
able to leverage the significant editing events, not only for meta-information, but
also for their ability to segment the information space. This behavior of orienteering
[10] to gain an understanding of part of the information landscape is consistent with
behaviors exhibited in other information foraging studies [233], suggesting Meta-
Manager’s feature set supports these processes when navigating a large information-
space.

[D3] Support Navigation

In our design of Meta-Manager, we were particularly concerned with making the
code history space navigable, given this significant challenge in prior work [120]. To
this end, we adapted different techniques for moving through the history including
annotated timeline labels, scrubbing, and search. However, one interesting aspect
of navigation that we did not explore as much, nor has been explored in related
literature to the best of our knowledge, is how navigation worked with respect to
moving between the “live” version of the code within the IDE and the historical ver-
sions housed with Meta-Manager. Through supporting this relationship, we found
multiple design challenges and opportunities.

Navigating Through Time. All participants began each question that had an op-
timal first step of searching by “searching” – the ubiquity of search made it a com-
mon strategy. However, one challenge participants faced when searching through

7.3. Lab Study 113

history was going too far back in the history and missing the connection of what
they were seeing in the prior version versus what was in the IDE. This happened
with 2 participants across 3 questions – the participants would search on the cur-
rent version of the code and then began clicking through the search results starting
from the earliest version. Since our algorithm works across time, it begins at the
current code and works backwards by adapting its query given identified changes
between versions – since participants could not readily see how the query evolved,
jumping to the beginning of the search results in the history (which is the last match
the algorithm found) was sometimes confusing. Evolving the search query is nec-
essary in order to ensure trivial changes are not disregarded as search results (e.g.,
switching const match = ’foo’ to const match = ’Foo’ where the “f” is now cap-
italized), but Meta-Manager may be improved by supporting more sophisticated
ways of summarizing the search over time or refining which matches should be in-
cluded. This optimization would also help with another issue participants encoun-
tered, where the search would perform differently depending upon what code was
selected in the IDE – given a question such as Q5 where participants would begin
by searching on a commented-out forEach loop, some participants would select the
whole loop while others would just select the first line, which would result in the
search performing differently given these different yet semantically-similar initial
strings.

Communicating “Now” versus “Then”. Another challenge of supporting navi-
gation between the IDE and the code history was how to represent the time between
the last-logged version and the current version within the IDE. 3 participants did
not immediately understand that the end of the code history timeline represented
the last-logged version of the code, and not a live view of what was in the IDE. This
may be a product of the lab experiment, which did not have participants editing
the code which would have let them see how the timeline updates given their edits.
Nonetheless, we found that the collapsing of edits by disregarding the amount of
time between edits, consistent with prior work [100], did not confuse participants –
however, not showing the lapsed time or un-logged edits between the last version
and the “live” version within the IDE was confusing, suggesting future work in bet-
ter showing how the user’s current in-IDE version of the code correlates to the larger
history.

Navigating Between and Across Files, Spatially and Temporally. Questions
that required participants to reason not only about the history of their current file,
but how that history relates to the history of other files caused confusion. Q2 required
participants to reason about how some code in the current file changed, given its
relationship to its original copy source in another file. Understanding the original
code’s intent was necessary in order to better reason about why the code from the
question was commented out – participants, with the “See Corresponding Copy”
button, can see a preview of what the copied code looked like at the time of the
paste. 2 successful participants and all unsuccessful participants struggled to reason

114 Chapter 7. Meta-Manager: Meta-Information for Question-Answering

about the connection between the “Corresponding Copy” version (which is on a
different version within in a different file), the version of the code that received the
paste, and how both of these information pieces related to the code in their current
IDE. Future systems may investigate how to better support this reasoning across
both time and space through supporting more interactive mechanisms for managing
versions, which has shown success in other contexts [206].

7.4 Discussion

We now discuss how Meta-Manager is situated in the larger context of making sense
of code and its history, and the role meta-information can play in that process. Prior
work has investigated how developers make sense of many variants of the same
code and its output [233] and the challenges in doing so – the authors note that this
foraging process involves managing similar yet disconnected information patches.
We showcase Meta-Manager as an improvement upon that model through extract-
ing and utilizing meta-information to serve as strong informational cues to both re-
duce the number of candidate patches to traverse through and to connect the history
into a larger, contextualized narrative. P2 noted that they were essentially “recreat-
ing the story” of the code when clicking from event label to event label to answer a
question about design rationale – notably, [233] also discusses this phenomenon of
information foraging being construed by users as assembling a “story”, suggesting
that our event labels may serve as one way of structuring these “stories”.

When considering code history as a story, this is not dissimilar to the concept of
“literate programming” and its philosophies, originally proposed by Donald Knuth
[125]. Knuth believed that code should be more naturalistic, written as an expression
of an author’s reasoning behind solving a computational problem. Programming, in
its current state, typically relies on documentation as a way of translating between
the lower-level code and its higher-level semantic meaning, with this documenta-
tion often spread across various platforms and represented using different modali-
ties such as inline code comments, Git commit messages, GitHub pull requests and
issues, and formal design documentation. With the rise of LLMs for code genera-
tion, there is a new platform and modality for these natural language descriptions
of code, which our work has shown are worth capturing as they can be used for
reasoning about design rationale. The not-so-distant future of software engineering
may consist primarily of this prompting for generating and modifying code – a fu-
ture in which whole programs may be constructed predominantly through prompts
that can be translated into code narratives not unlike the literate programs Knuth
described. In this way, the code serves to describe the lower-level implementation
but the higher-level goals and reasoning are communicated through the prompts.
Meta-Manager begins to probe at how these forms of code-related meta-information
may be captured and presented to help construct these narratives.

7.5. Limitations and Threats to Validity 115

To the best of our knowledge, our work with Meta-Manager and its study are the
first pieces of research to investigate the provenance of AI-generated code. Prior re-
search has cited the importance of this research thread in order to answer questions
such as “does AI-generated code leads to fewer (or more?) build breaks”, “what
prompts were used to create this code”, and if AI-generated code should be un-
der more or less scrutiny during code reviews [24, 231]. These questions, in theory,
could be investigated using Meta-Manager through following the development of
AI-generated code throughout its life-cycle. Meta-Manager also demonstrates that,
through capturing AI code-generation provenance information, other questions and
activities can be supported, such as reasoning about code design rationale. Consid-
ering more software will likely have source code written by LLMs, tooling support
for maintaining and comprehending this code, along with reviewing it for its appli-
cability and correctness, are likely to become more important.

In summarizing our findings and their implications, we find support for the
claims that:

• code history data, when properly versioned, contextualized with meta-informa-
tion, scaled, visualized, and prioritized to support easier navigation, can be
used by developers to reason not only about what, how, and when some change
happened, but also why;

• capturing information traces during the AI code-generation process can be
used to support this reasoning; and

• more generally, some information produced as a by-product of authoring code
can be mapped to later developers’ information needs – thus supporting the
research framework (Figure 1.2) proposed in Chapter 1.

Previous systems have captured some of this meta-information, such as Mylyn
[78], and typically used this information to support code authoring tasks, such as
localizing code patches to change, but were less concerned with questions of code
comprehension by later developers. Other systems, such as the wide array of code
visualization systems (e.g., [261, 270]), usually did not imbue additional information
about the context in which the code was created. We show, with Meta-Manager, how
these two approaches can be complementary to one another in supporting developer
sensemaking tasks.

7.5 Limitations and Threats to Validity

Our study is limited by the fact that we did not have a control condition to compare
our results to. While the questions that we asked may be impossible to answer with-
out a tool like Meta-Manager, without a control condition, it is difficult to make any
definitive claims about whether or not a participant’s ability to answer these ques-
tions would result in some measurable difference in terms of code comprehension.

116 Chapter 7. Meta-Manager: Meta-Information for Question-Answering

Given the amount of prior work claiming that these are important questions and
no question received a “never asked” in the post-task survey, we have evidence to
suggest that supporting these questions is useful.

Our study is also limited by the fact that we used an artificial code base, as op-
posed to a code base generated with prolonged usage of the tool. We feel that choos-
ing to have an artificial code base such that we can simulate the real experience of
having many code versions to navigate through allows us to better ensure that Meta-
Manager is scalable to support development on a real code project. We attempted to
mitigate the potential biases introduced through artificially creating the code base by
ensuring that our code changes were produced in a way consistent with real world
code editing practices, diversifying where our code came from, and asking our par-
ticipants whether the code from the study was consistent with code they have seen
in their own work. Future work would benefit from assessing how the code version-
ing works for information seeking by many developers working on the same code
base over time.

An additional limitation is that the questions asked during the study were made
up by the first author. While each question was derived from previously-reported in-
formation needs developers have about unfamiliar code and participants rated each
question as a question they at least sometimes ask, additional studies may investi-
gate how developers can use Meta-Manager to answer their own questions about
their code in order to better understand how the system supports answering real
developers’ questions that were not asked in this study. Further, the study in its
current form cannot answer how often Meta-Manager would be useful, as we did
not capture the full breadth of questions it can be used to answer and the frequency
developers ask those types of questions. Previous work, such as [159], and our own
reports from our participants suggest that these questions occur semi-frequently and
are challenging to answer – nonetheless, future work would improve upon our work
by investigating to what extent the breadth of developers’ information-seeking be-
haviors are supported with Meta-Manager, and what extensions to Meta-Manager
might help it answer more questions. Our study, instead, focuses on to what extent
Meta-Manager and its features do work for answering some of the questions we
know from prior literature are difficult to answer.

7.6 Future Work

Our lab study provided some evidence that Meta-Manager helps developers answer
hard-to-answer questions about code. However, this was in the context of a devel-
oper joining an unfamiliar code base with no real contextual knowledge of the code
or its history — while this allowed us to best assess how well the system works in
assisting developers in answering these questions in, arguably, the most difficult sit-
uation, future work would benefit from seeing how Meta-Manager helps developers
when they are working on their own code. Open questions remain in this situation —

7.6. Future Work 117

given developers’ own mental models of their code base and, most likely, its history,
one can imagine that usage of Meta-Manager may change, as developers’ questions
about the code base may become more specific since they have more information
to work off of. Improvements to Meta-Manager to support more personalized in-
formation may be a richer querying system that supports project-specific terms or
time constraints, such as “show me all edits to this function between bug fix #124
and now”, or allowing users to define their own “events” outside of copy-paste,
code commenting, etc., that the system will automatically log as an event of interest.
Prior work has supported similar team and project-specific tagging of information in
software projects to help with source code navigation [238, 247] – extracting project-
specific tagged events as timeline events may also help developers with navigating
between code versions.

Additionally, there is existing meta-information about code project history that
Meta-Manager does not currently show, such as the boundaries between Git com-
mits along the timeline, or event labels for typical historical events like merged-in
pull requests. One can imagine changing the visualization to show visual bound-
aries between these events, which may also help to better visually convey to a user
why some block of code has appeared or disappeared as code commits are merged
together, pulled in, or checked out. This may also help make this information more
easily navigable, considering foraging through many Git events is a known chal-
lenge [119]. We additionally want to support more event capturing, such as when
documentation-type code comments are edited,6 and other interesting code sources,
such as CoPilot. CoPilot events, in particular, may be particularly interesting given
that user’s edits that prompt CoPilot (especially in the case of natural language
prompts to CoPilot to generate some code) may serve as strong signals for what
the code author was trying to do. Conveying more of this meta-information in con-
junction with more structured time information may give developers more useful
navigational way points for searching for code across time. Expanding the types of
meta-information Meta-Manager supports may help with answering other types of
programming-related questions.

However, while expanding the types of information captured may help later de-
velopers, an important concern held by developers and researchers we showed this
work to is anxiety around sharing information that may be seen as “embarassing”.
Multiple researchers asked questions around whether or not there is a way to, per-
haps, hide that one copied and pasted from ChatGPT or Stack Overflow since they
would not want their coworkers to know they asked a question on one of these
sites that they felt they should have known the answer to already. The current ver-
sion of Meta-Manager was seen as a probe on whether exposing that information
to support later developers’ sensemaking would be useful and showed the value in

6In the current version of Meta-Manager, one can search on a code comment backwards through
time in the same way that regular code can be searched on, but better categorizing the type of code
comments, such as “TODO’s” or “bugs”, may make this information more comprehensible and search-
able.

118 Chapter 7. Meta-Manager: Meta-Information for Question-Answering

doing so, but one can imagine improvements to Meta-Manager that allow for more
fine-grained sharing and presentation of information. Ideas include black-listing or
white-listing certain websites or subject matters to share information from, choos-
ing to only be listed as “anonymous” on other developers’ Meta-Manager timelines,
and/or curating your set of queries and copy-pasted website sources prior to push-
ing them to the Meta-Manager database.

Currently, Meta-Manager does not support saving or sharing specific code ver-
sions, queries, or filter settings. There may be situations in which it would be use-
ful to keep track of that information, such as for communicating with collabora-
tors about how and when a bug was introduced [142] or for saving a code version
that a developer may be considering reverting back to [119, 120, 269]. This meta-
meta information (meta information about the use of the meta information about
the code) could be useful to help others perform similar sensemaking to the current
user, based on research [72] that multiple people through time often need to repeat
previous people’s work.

7.7 Conclusion

Meta-Manager represents a promising path forwards with respect to collecting and
making sense of large amounts of contextual meta-information that is otherwise too
difficult to reasonably keep track of. Specifically, the system utilizes an anchor de-
rived from the document structure which may include provenance data and versions
based upon the mutability of the source across time, where all of the information is
authored by the system. In this system, we additionally wanted to support navigation
across many versions, so we leveraged our insights into difficult code rationale and
history reasoning in order to prioritize different types of information given its con-
tent. We further leveraged the developer’s working environment through listening
for known developer behaviors, including copy-pasting code. Thus, Meta-Manager
encapsulates and accounts for 7 of the 8 properties we found to be particularly im-
portant in meta-information systems (see Section 1.1) – interestingly, the one prop-
erty we did not specifically design for (audience and how meta-information should
be authored and presented for a public versus private audience) was the property
we received the most feedback and concern about from the wider research pub-
lic, with some engineers and academics expressing concern around sharing their
meta-information, including Google queries or copy-pasted code from online, if it
could be considered as embarrassing. Nonetheless, Meta-Manager overall showed
the promise for designing a comprehensive and scalable meta-information system,
leading us to leverage its architecture and design principles for our final system,
MMAI.

119

Chapter 8

MMAI: Accelerating Sensemaking
with Logs and LLMs

8.1 Overview

In this work, we have investigated methods for improving comprehensibility of code
and code-related meta-information through strengthening the relationship between
these two rich information sources. We have explored the benefits of bridging code
and its meta-information across different sensemaking domains including under-
standing API documentation and comprehending unfamiliar code, and the results
have been promising with developers successfully creating and using the contex-
tualized information to perform better on development tasks and answer relevant
questions about code.

Despite this success, I recognize that we are currently in a transitory state of soft-
ware development with the rise of AI tools for programming assistance. These tools
are most often used for code generation, with a recent report from developers claim-
ing that around 31% or more of their new code is generated from AI tools [148]; it is
expected that this number will continue to grow as AI tools continually improve and
the barriers to using them are lowered. While work with LLMs for programming-
assistance mostly revolves around improving code generation and understanding
capabilities, I see alternative opportunities for supporting programmers.

One cognitively intensive task that is commonly done by programmers, yet has
received surprisingly little attention nor support in Software Engineering research is
print debugging. A recent report claims that, even though sophisticated IDE-provided
debuggers have gotten only more powerful, many programmers still prefer to de-
bug using print statements [19]. Yet, their take-away is not to directly support print
debugging but, instead, to make IDE-provided debuggers even better, with the im-
plication that print debugging is sub-optimal and can be eradicated given even more
tooling support for sophisticated debuggers. Instead, I argue we should adapt to
the tooling developers are already choosing to use in order to make print debugging
more powerful. Further, I believe that the meta-information generated during print
debugging can be utilized by LLMs to accelerate developers’ sensemaking.

120 Chapter 8. MMAI: Accelerating Sensemaking with Logs and LLMs

As a case study of these hypotheses, I expanded on the Meta-Manager architec-
ture to create MMAI. MMAI builds upon Meta-Manager in order to directly sup-
port print debugging through both handling previously-onerous information col-
lection and tracking tasks by supporting the collection of log values through our
own logging package, mmlog, and supporting reasoning and synthesizing of log val-
ues through connecting into the OpenAI API [199] to query on this even richer set
of historical data. We chose to support the collection of log data in conjunction with
Meta-Manager’s code history and provenance support in order to support more fine-
grained question-asking and answering when debugging. For example, consider the
query “Why is foo equal to undefined when it used to be equal to an array of inte-
gers?” – with Meta-Manager’s node-based data model and historical knowledge, the
system has knowledge of both how foo has been used and how foo has previously
been invoked in the past. This data is then complemented with the console.log

values that are captured with our package, mmlog, such that the LLM has all of the
contextual knowledge necessary in order to answer this otherwise vague question.
Through our usage of GPT-4, we make asking this question directly actually possible
using retrieval augmented generation (RAG), in which GPT-4 takes that query in a
pre-formatted prompt and applies it to the set of historical data that we ingest into
the query.

To further identify a set of questions MMAI would be well-poised to answer,
we completed an exploratory interview study. We asked 10 developers about their
practices and questions they have when performing print debugging and the sorts
of questions they would ask if given access to an oracle that was aware of their de-
bugging practices (a similar research approach to [121]). Through an open-coding
thematic analysis, we developed 7 queries we believe MMAI can answer through di-
rect, AI-assisted history and log support. Through this ideation and exploration, we
contribute MMAI as a prototype system for answering debugging and log-related
questions with AI, and a set of developer queries asked in service of supporting print
statement debugging that have not been previously supported directly via tooling.

8.2 Background and Related Work

In order to disambiguate our discussion of print debugging, which utilizes log state-
ments and log values, from other logging contexts, we will briefly discuss the termi-
nology and definitions derived from prior work that we will be using hereafter. We
also briefly discuss some of the background and related work on print debugging in
service of further motivating and situating our work.

8.2.1 Terminology and Background

• Print debugging [171], also called printf debugging [19, 20, 146] or trace de-
bugging [146, 207], is the act of placing lines of code that print information to

8.2. Background and Related Work 121

a console or terminal at run time in service of determining when, where, and
how some problem in the code manifests.

• A log statement [81] is the line(s) of code within a developer’s source code that
invokes a call to print some information to a developer’s console, terminal, or
other output location. For example, a log statement in JavaScript could look
like this: console.log(’myDogRingo ’, myDogRingo()), while the same ex-
ample in Python would look like this: print(’myDogRingo ’, myDogRingo()).

• A log value is the execution result generated at run time from a log statement
that appears in the developer’s console or other output location. Continuing
from the last example in JavaScript, a log value could look like this in a web
console (e.g., Google Chrome Developer Tools): myDogRingo is very cute, in
which the string “myDogRingo ” is appended to the function call myDogRingo()’s
return value of “is very cute”. Note that the form in which a log value ap-
pears is dependent upon the development environment and the code within
the log statement itself, given that log values are an amalgamation of the con-
tents of the log statement. This amalgamation often includes both static val-
ues such as strings and dynamic values such as variables. We further clarify
that a log value is the direct result of a log statement – in contrast, we use the
term output to refer to the actual result of either the entirety or some part of
a software system, which may include a full software application, a graphi-
cal output, an algorithmic computation, or some other artifact created by the
developer’s source code.

Note that the log statements and log values discussed in our work are not the same
as the logs discussed in other research about logging. Logging is the act of generating
long-term output records that characterize the behavior of an often-large enterprise
system for later analysis, which contrasts from print debugging, in which log val-
ues are not meant to persist indefinitely and are, instead, an act of inquiry by a
developer in situ. There exists a wide body of Software Engineering research around
logging (e.g., a comprehensive literature review that synthesizes over 200 papers
[81]), including systems for cleaning messy logs [219] or analyzing and generating
workflows of logs [155], and empirical studies of considerations developers have
when designing their logs [144]. While some of the problems discussed in the works
around dealing with messy logs [219] and reasoning about logs [155] generalize to
our work, our design choices for MMAI had to account for in-real-time source code
modification, including updating log statements and values, as opposed to running
purely post hoc. Further, the nature of inquiry differs between post hoc, large-scale
log analysis and ad hoc print debugging – a developer performing post hoc reason-
ing is often wondering when or how some observable difference occurred, while a
developer debugging wants to know why some code currently does not work, which
may result in reasoning about code changes, but not always. MMAI supports this
inquiry through automatically capturing log values that are associated with code

122 Chapter 8. MMAI: Accelerating Sensemaking with Logs and LLMs

changes, such that the system can draw inferences when comparing the developer’s
current code to code that previously worked.

8.2.2 Print Debugging

The act of debugging, by definition, is the act of fixing some defect in software. This
process can be broken down into steps, called “TRAFFIC” by Zeller [275]: track the
problem, reproduce the failure, automate and simplify the test case, find possible in-
fection origins, focus on the most likely origin, isolate the infection, and correct the
defect. Most relevant to print debugging are the mid-to-end points of the process
(i.e., find, focus, isolate, and correct), with find and focus being particularly impor-
tant. Print debugging is often used for fault localization [260], in which developers
place log statements at different places within the source code in order to observe
whether or not some code is reached and what the log values are at different points
during the execution. This foraging process, when debugging, can be time consum-
ing [197]. Once a developer has formed a hypothesis about where a bug is orig-
inating from, log statements can similarly be used to observe the behavior of the
problematic software and test potential solutions. Given this lightweight and flex-
ible nature in terms of their implementation and the intent behind their usage, log
statements remain the tool of choice when debugging [19, 194].

Despite the benefits of log statements for print debugging, there are some draw-
backs to their usage. Challenges can be broken down into two predominant themes
– log statement authoring and the implications therein, and log value presentation.
Authoring log statements inherently introduces clutter to the code base with poten-
tially erroneous information (not dissimilar to the code comment discussion from
Chapter 4) – developers must be judicious in cleaning up the log statements when
they are no longer needed [19, 81]. Interestingly, failing to clean up these log state-
ments has organically led to an emergent class of software repository mining re-
search in which these log statements are mined to understand where bugs are more
or less prevalent within code bases [13, 264, 265]. Further, some of these logs come
from large enterprise systems such as Google’s monolithic code repository [265].
This provides evidence that the analysis of log statements with historical data is
useful for reasoning about code faults, even developers in large scale and profes-
sional settings are using print debugging despite the existence of more sophisticated
techniques, and the act of removing these log statements is not foolproof. Log value
presentation suffers from multiple issues, including how log values are (not) ordered
[141], the structure (or lack thereof) of log values [112], and the scale of log values to
parse through, especially in enterprise contexts [19]. We attempt to mitigate some of
these challenges through smart log value summarization, clustering, and filtering,
while supporting direct inquiry and log statement and log value grouping with our
tool, MMAI.

8.3. Exploratory Interview Study 123

8.3 Exploratory Interview Study

In order to more comprehensively understand the types of log statement and value
reasoning and management activities that MMAI might be helpful with, we com-
pleted a formative interview study. The interview results were qualitatively ana-
lyzed in order to come up with a set of queries for which we could provide direct
tooling support. In summary, we came up with 7 queries that we aimed to support
in MMAI.

8.3.1 Method

Interview Design

The interview was semi-structured and included questions and follow-up questions
related to debugging with log statements. Participants began by describing their
programming background, and then were asked to describe a recent debugging ses-
sion, in order to help mentally situate them for the following debugging-related
questions. For each high-level debugging-related question (e.g., “(In your debug-
ging session), when you were running your code, how did you find the outputs you
were interested in in the console?”), there was a follow-up question that asked par-
ticipants to come up with queries they had when performing that task and how they
would express that query to a log statement history and value oracle. In this way,
we sought to tightly couple participants’ queries to the tasks that they would sup-
port when performing print debugging. Once each high-and-lower level debugging
question was asked, participants were asked to share any other debugging or log-
statement and value related thought they had that did not organically come up dur-
ing the interview. The interviews took approximately half an hour, were approved
by our institution’s Institutional Review Board, and were recorded with video con-
ferencing software. During each interview, I took notes to supplement the recordings
and transcripts. The protocol can be found in Appendix G.

Participants and Recruitment

We recruited 10 participants through our social networks and through our univer-
sity’s various computer science-related Slack work spaces. Participants’ professions
ranged from professional software engineer, to masters students with previous pro-
fessional programming experience, to fellow PhD students who actively programmed
as part of their research. On average, participants had 5 years of professional devel-
opment experience, and 7.5 years of total experience. Participants’ programming
languages of choice ranged from JavaScript and TypeScript to Python, C++, Scala,
and Go, with the majority (7 participants) primarily using web-based languages and
frameworks.

124 Chapter 8. MMAI: Accelerating Sensemaking with Logs and LLMs

Analysis

To analyze the data, I used an open-coding, thematic analysis while comparing an-
swers by question and follow-up question. More specifically, I investigated what
themes were consistent across each question and what queries participants wanted
to ask, given the higher-level task or goal that was presented in the original question.
Other emergent themes, such as in what context each task was more or less relevant
or what other alternative tooling choices participants used when debugging were
also captured.

8.3.2 Results and Discussion

Interview participants will be referred to as P1 through P10. Throughout the results
I will discuss high-level, emergent themes, along with the queries that would help
in supporting the behaviors or tasks described that are associated with each theme.
Each query will be labeled Q1 through Q7.

Participants discussed their log statements as tools of inquiry. P7 articulated this
sentiment well, stating:

I’m working with a somewhat semi-transparent or opaque system, even if it’s
my own code, and I’m sort of like poking it, or like trying to interpret it. So I’m
asking it to tell me things, and it tells me things that I look at in my console...
it’s kind of like a theory building exercise. - P7

Thus, the way in which participants structured and placed their log statements
within their code to support inquiry varied. Common log statement practices in-
cluded placing them across branching code to understand control flow and code
reachability (4 participants), tracing variable values through execution (4), and check-
ing variable values or data shape (4). While participants’ log statements are often
semantically related, such as a set of statements checking whether the if or else

block was reached, conventional editors and consoles do not support grouping re-
lated lines of log statements or values together. Queries that could support this
group-level reasoning include:

• Q1: Group log statement A, B, and C’s values

• Q2: What are all the log statements and values related to variable A?

Participants expressed that finding places to insert these print statements was
often not a challenge, given their familiarity with the code (e.g., “I usually have an
intuition as to where the problem is, I’ll figure out what the problem is from there.” - P4).
Instead, a common challenge came from locating the relevant log value(s) in the con-
sole or log data. Noisy logs, in particular, commonly made locating log values of
interest difficult, with participants bemoaning large log value sets due to code being
continually re-run in an event loop (P4 and P10) or due to multi-threaded execution

8.3. Exploratory Interview Study 125

(P6 and P8), large enterprise code bases with many log statements (P2), and asyn-
chronous code creating confusing log sequences (P4 and P7). Participants expressed
a desire to filter log values to only log statements that were relevant to their current
task, with some participants already using ad hoc strategies to make that filtering
possible. Strategies included using a “key-value” system for “labeling” their logs
(P1, P2, P3, P6, and P10) in which the “key” will include the variable name and pos-
sibly the file name, and the “value” will be the variable itself, such that they can
search for that “key” in the console; another more onerous strategy was to remove
irrelevant log statements through manually editing the code (P1 and P5), but this
strategy broke down if the logs were in files the participant could not edit. Notably,
most “relevant” log statements were only the log statements authored within the
current debugging session (e.g., “If it’s been more than a little bit of time, [the] logs won’t
be helpful anymore because I don’t remember them.” - P1). Thus, we found a need to
support the following queries:

• Q3: Remove all log values that are not related to variable A.

• Q4: Remove all log values not created during this debugging session.

Once the relevant log values (or groups of values) have been found, participants
expressed the challenges they had both in interpreting the log values and in using
that information to design a solution. Three participants (P5, P7, and P8) expressed
essentially the same sentiment when performing this interpretation while debug-
ging – either the code is wrong or the their understanding of the code is wrong
(“Code doesn’t lie” - P8). Returning to the concept of log statements as tools of inquiry,
the lens they provide into the underlying logic and form of data is relatively narrow
and fragmented, leading to a large amount of cognitive stress on the participants
(“There’s, I guess, a big cognitive load that I’m putting on myself to remember what order
everything’s supposed to be firing in” - P4). This synthesis process of reasoning about
log statements both in relation to one another and their log values across time was
a challenge. Three participants chose to sometimes save log values in other places,
such as note pads (P1) or in files with semantically-meaningful names (“[When doing
something tricky] I actually save logs into different text files that have descriptive names,
[with] one file called ‘multi-thread-on’ and one called ’multi-thread-off’.” - P6), in order
to more directly track values over time or given code versions. Participants wanted
support from an oracle that could track and infer correlations between code changes
and output changes (P1, P3, P4, P6, P7, and P10), both in support of finding when
a bug was introduced (P1 and P3) and for reasoning about why some code is prob-
lematic to help with deepening understanding (P3, P4, P6, P7, and P9). We found
support for the following queries:

• Q5: When did this log statement last produce the correct value?

• Q6: Why did this log statement produce the last incorrect value?

126 Chapter 8. MMAI: Accelerating Sensemaking with Logs and LLMs

• Q7: Summarize this log statements’ values and find when something interest-
ing happened.

Other themes that emerged were not directly related to queries about log state-
ments or log values, but included sentiments related to classic debuggers and the
ephemeral nature of logging. Three participants expressed their distaste for debug-
ging tools (“I find debug tools very unnatural like ‘you should use breakpoints’ and ‘step
in’ are not how I think and are confusing.” - P4), while one participant used these tools
dependent upon their type of development (P1), and another used them almost ex-
clusively (P8). Multiple participants, when discussing why they do not use these
tools, explained that they lacked formal debugging training (P5) or found the tools
too heavy-weight, either due to resource intensiveness or due to having to set up
specific development configurations (P6). Interestingly, there was a pervasive sen-
timent of shame amongst some participants when discussing their preference for
print debugging over using more sophisticated debuggers, with some claiming per-
haps the preference stems from an inflated ego (“I think to myself, ’I can get away with
debugging this without these robust tools’.” - P4) or that they are just not efficient at de-
bugging (P5 and P7). This sense of shame has not only been echoed but reinforced
in other research, with a survey respondent in a related study about developer de-
bugging practices [19] stating that people who use print debugging “never learned
how to use a debugger”. I see developer’s reliance on print statements not as a
developer-problem but as a tool problem – clearly, print statements are providing
some affordances traditional debugging tools are not, so we should adapt the tools
to match the developers’ habits, not the other way around, which partially inspires
this work.

With respect to the ephemeral nature of print debugging, the act of authoring
log statements shares many similarities to the act of creating and making sense of
the other forms of meta-information that have been discussed in this thesis. Par-
ticipants discussed how their logs were often only useful in the moment they were
authored (not dissimilar from annotations and other information scraps), and how
they sometimes must be synthesized together in order to be useful (similar to a driv-
ing motivation for the curation work – see Section 5.2). More broadly, these usages
and ad hoc practices imply that traditional tooling is not adequate for performing
the complex sensemaking activities the participants want to perform with their print
statements. Through this meta-information lens, I adopt a similar approach to my
previous systems to assist in sensemaking of programming information, with the
meta-information of choice this time being log statements and values.

8.4 Overview of MMAI

In order to support more sophisticated reasoning and management of log statements
and values as a form of meta-information, we developed MMAI (Figure 8.1), an
expansion of the Meta-Manager model. We begin our overview by discussing a

8.4. Overview of MMAI 127

FIGURE 8.1: MMAI as it appears within Visual Studio Code: the pane appears in the bottom area of the
editor, with the left area displaying a visualization of the history of user-selected code nodes that the
user wants to inspect, while the right area displays information about each code node, now including
additional output information and an interactive chat component. The two code version boxes for
calculateBoxValue and App are collapsed (see expanded version in Figure 8.3).

debugging scenario inspired by one of our interviewee’s own experiences to show
how MMAI may have been used to overcome some of the barriers they discussed.
We then discuss the MMAI design in-depth, including how it leverages and builds
upon the Meta-Manager design, and how MMAI directly supports the queries found
in our formative study through both specific design choices in the user interface and
through leveraging AI.

8.4.1 Scenario

Linda1 is creating a web application that takes live-stream data from the popular
video game streaming platform, Twitch, and renders the streaming video with ad-
ditional information, including a drawn box around the main player character. She
notices that the coordinates of the box are incorrect, thus the box is not rendering in
the correct location. She uses MMAI to assist in this debugging episode. Linda has
previously inserted MMAI’s mmlog statements in this render loop as this part of the
code has been problematic in the past. Further, she can choose to filter out the log
values they produce as part of MMAI’s log management capabilities, thus choosing
to leave the mmlog lines in her code introduces no additional cost to her when they
are not relevant.

Linda begins by finding and placing relevant mmlog calls given her line of in-
quiry. This includes mmlog calls in both the back-end where the computation actually
occurs and in the front-end where the box is rendered, given the computed coordi-
nates from the back-end. Normally, the structure of the code and the ordering of the
log values in the output would make reasoning about these semantically-related yet
disparate parts of the code difficult, but MMAI allows for users to compose related
code histories, log statements, and log values together into a singular visualization
(Figure 8.1-1) through selecting calls to mmlog in the editor using icons in the gutter

1This scenario is inspired by a recent debugging episode shared by P4 – “Linda” is used as a
pseudonym.

128 Chapter 8. MMAI: Accelerating Sensemaking with Logs and LLMs

FIGURE 8.2: How mmlog calls appear in the editor, including star icons in the gutter to either include
or exclude the calls and their corresponding nodes from the rendered “Joint History” visualization
(Figure 8.1-1) and code version boxes (Figure 8.1-2b and 3b) in the MMAI pane. Filled-in star icons
mean the nodes will be included. Note that these two functions, calculateBoxValue and App, are in
different files.

(Figure 8.2-3). This allows Linda to not only see the histories and log statements and
values in a visually grouped manner, but also allows her to query on the composed
history of these otherwise-separate parts of the code.

With the previously-captured log values in MMAI’s memory and her set of mmlog
statements and values of interest, Linda uses MMAI’s querying system to compare
her current, incorrect log value to the last-known correct value and the correspond-
ing code. In the current code version, she explores the current code version and its
run data in her function of interest. In Linda’s case, the amount of log values is a con-
siderable challenge, given that both the live stream data and the rendering loop run
continuously. MMAI provides a high-level summary of the current run’s mmlog data
(Figure 8.3-7) and how it compares to previous code versions’ values of the same
data. The LLM performs this comparison – in looking at Linda’s data, the LLM
finds that the data in the current run includes negative values for the x-coordinates
and suggests comparing code versions (Figure 8.3-8, “Compare to current version”
button).

In isolating her problem, she wants to know whether the Twitch API is returning
incorrect data, thereby interfering with her calculations, or whether the calculations
are implemented incorrectly. Through comparing the earlier working implementa-
tion shown to her by the LLM on the timeline to the current implementation, the
calculation implementation appears the same. She wants to be thorough in her in-
vestigation, so she asks MMAI to find other logs related to her calculations (Figure

8.4. Overview of MMAI 129

FIGURE 8.3: How an expanded code version appears in MMAI. (1) is similar to Meta-Manager (see
Figure 7.2), in that information about the edit is shown including when it occurred and what the
code looked like at that point in time, along with any additional meta-information (with this version
containing no additional meta-information). (5) shows the optional, supplementary information when
mmlog is used, including the log statement (6) (in case multiple mmlog statements exist in one version),
most recent log statement and values along with aggregate counts and a button to ask about that value
(7), and computed queries that can be sent to the LLM, given the mmlog statement and value (8), along
with the option for the developer to write their own query (9).

8.3-8, “Find other logs related to box” button), which updates the MMAI pane with
other code versions that include mmlog calls that include the variables in her current
version. Upon inspecting these versions by similarly inspecting the MMAI code
version boxes, she finds the same erroneous values. Using the joint history user in-
terface, she similarly ensures that the front-end rendering values are the same as the
back-end computations, so she turns her attention towards the Twitch API.

To further dig down into her problem, she uses the MMAI chat system to directly
ask the MMAI AI model about her bug. She begins with the pre-formed query of

130 Chapter 8. MMAI: Accelerating Sensemaking with Logs and LLMs

“Why am I seeing this output” (Figure 8.3-7, question mark button) about her erro-
neous calculation result. The AI model uses the output values on the current code
version as reference and the surrounding context including code, the history of the
App function given the joint history, and imported APIs in order to inform its an-
swer (see Section 8.4.3). Using the contextualized information, the model responds
that the Twitch API sometimes is laggy in its response time, which could lead to
the box coordinate calculation using old data, instead of the current data. MMAI
additionally generates follow-up questions given the model’s response, with one
of the generated responses asking how to ensure latency with the Twitch API. These
follow-up questions are requested as part of the prompt we give MMAI– we instruct
MMAI to, given the just-generated answer, along with the additional context in its
context window, to come up with the most relevant follow-up questions a developer
may want to ask2. Linda chooses to ask that question and receives a response about
how JavaScript’s async/await constructs can resolve this bug. Linda resolves her
bug using the model’s suggested code.

8.4.2 Detailed Design

In designing MMAI, we sought to provide functionality that both supports the needs
we found in our formative study (Section 8.3.2) and allows for varying levels of in-
quiry through utilizing the historical information Meta-Manager already captures,
while improving upon that architecture using state-of-the-art AI. Below, we discuss
how the various parts of MMAI support different stages of the print debugging pro-
cess with respect to the queries asked at each point.

Locating Output Values of Interest

A recurring theme that arose in our formative study was that methods for isolating
log statement(s) and values(s) of interest were ad hoc and often broke down when
presented with challenges such as large-amounts of log data. To counteract this
challenge, MMAI supports mechanisms for both finding and grouping log values of
interest, filtering out irrelevant values, and summarizing large sets of output data.

Log values are presented in-context within each code version, such that develop-
ers can visually compare different values produced by the same log statement and
values produced by multiple log statements within the same function. In this way,
MMAI utilizes the Meta-Manager’s block-based organization of code information,
which has been successful in combating issues of scale.

The adopted Meta-Manager data organization naturally lends itself well to fil-
tering out values that are not of interest. The user interface already organizes log
statements and values by node, meaning a user can directly navigate and inspect
log values in the MMAI pane by node and log statement. With this organization, the

2For all prompts used with MMAI, see Appendix B.

8.4. Overview of MMAI 131

user does not need to actively filter out values, and, instead, they can focus on the
values they care about.

Developers can further locate related log statements through using MMAI’s query
to find logs related to the currently in-focus log and its subject matter (see Figure 8.3-
8, “Find other logs...” buttons). MMAI utilizes both the capabilities of its LLM for
understanding code and control flow in conjunction with MMAI’s knowledge of
the AST (another feature inherited from the Meta-Manager architecture) in order to
isolate candidate mmlog calls that may be related to the identifiers included in the
original mmlog argument list (e.g., box or offsetBound in Figure 8.3). In this way,
the user can isolate and synthesize a group of semantically-related but potentially
disparate logs and present their values together, addressing Q1 and Q2 from our
formative study.

MMAI additionally utilizes the Meta-Manager architecture to improve upon its
visualization and presentation of code nodes for synthesizing historical and log data
by allowing users to create their own groups of nodes. When the user runs their
code, MMAI will detect each executed mmlog statement and place a star icon in the
gutter next to the statement. A user can then click the star icon(s) (Figure 8.2-3),
which will add the associated mmlog call and its surrounding node and history to a
user-defined set, which will then be rendered in the MMAI pane. Given findings
from our formative interview (i.e., Q1: “Show me just log statements A, B, and C”),
we wanted to directly support this line of inquiry without requiring the user to have
to format their log statement in a particular way to allow for text-based search, like
the brittle “key-value” pair strategy we saw in our study. Further, since the MMAI
visualization is already organized by time and code version, the traditional time-
based ordering of information in a console lends itself naturally to this visualization
approach.

Another way in which MMAI leverages the Meta-Manager architecture is through
its versioning of log statements and values as part of each code node’s history. When
a mmlog statement is invoked when the user runs their code, MMAI matches that
mmlog statement to the known mmlog statements in each code node and, if a match
is found, appends the generated value to the history for that particular statement. If
a match is not found, MMAI will start a new history for that log statement. These
values are then stored in the MMAI database on the next file save. Through this data
organization, not unlike the code node discussion in Section 7.2.3-[F1], we attempt
to cut down on scale through keeping individual database entries as small as pos-
sible by having each call to mmlog be its own entry in the database (as opposed to
aggregating or summarizing all calls that occurred across, e.g., a run or particular
code version). This also helps the user find individual instances of calls of interest,
since each log statement and value is treated independently, thus a path forward
for answering queries like Q5 which asks “When did this log statement last produce the
correct value?”. This ability to drill down on a particular mmlog statement also makes
answering queries such as Q3 (“Remove all log values that are not related to variable A”)

132 Chapter 8. MMAI: Accelerating Sensemaking with Logs and LLMs

possible by removing all unrelated log values. Nonetheless, if the user is logging a
very large value (e.g., a recursive JSON structure), we still run the risk of the entry
being too large for the database and/or the value being intractable and thus too dif-
ficult for a user to make sense of, especially once some time has passed. We further
discuss these limitations and potential solutions in Section 8.6.

A feature unique to MMAI is its historical knowledge of log statements and val-
ues that are contextualized to a particular code version and optional supplementary
meta-information. With this knowledge, MMAI can both summarize the history
through retrieval augmented generation and compare the most recent log value(s)
to its understanding of the code’s intended result and previously-produced values
to assist in isolating anomalies. Through these multiple approaches to finding log
values of interest, we expect MMAI will be an improvement over the ad hoc mech-
anisms developers typically employ.

FIGURE 8.4: How the chat interface appears within the MMAI interface, below the log and version
data. (1) is the user’s query – in this case, this is a pre-generated query, created by pressing the “Com-
pare to current version button” (Figure 8.3-C). (2) is the LLM’s response. (3) is a link to the code version
the system is looking at when coming up with its answer. (4) are the log values the system found in
its history search. (5) are the generated follow-up questions given the answer the system generated.
(6) are the references the system used, including links to code versions and a summary of the span of
history it looked at when coming to its answer.

8.4. Overview of MMAI 133

Synthesizing and Understanding Log Values

MMAI allows for developers to make sense of their log values in multiple ways. An
advantage of existing within the editor is MMAI can utilize more context when al-
lowing users to prompt the LLM model. To assist in this prompt-creation, MMAI
has pre-formatted prompts that the user can just press a button to ask, while also
supporting free-form prompt generation. The pre-formed prompt associated with
the question mark button (Figure 8.3-7) supplies additional meta-information in the
prompt including the current code version, a summarized history of the changes be-
fore, and information ingested about any external libraries the user may be using,
including version numbers taken from the user’s package.json file. In this way,
MMAI attempts to provide as much contextual information as it can to support the
LLM in coming up with a reasonable explanation. We additionally require the sys-
tem to highlight what information (including prior code versions or log values – see
Figure 8.4-3 and 6, Figure 8.1-5) it used when coming up with its answer to improve
the trustworthiness of the answer and to reduce the likelihood of hallucinations.

Despite our best efforts to improve the quality of generated LLM prompts, it
is unlikely that a single LLM answer will completely address whatever issue a de-
veloper is encountering. We provide follow-up questions to each LLM-generated
answer in order to further utilize the ingested context for reasoning through what
the problem may be and further reducing the amount of mental processing the user
needs to do (see Figure 8.4-5). These generated questions are created by having the
LLM not only come up with an answer to the user’s query, but also come up with
follow-up questions to the answer given what it found in its historical synthesiz-
ing. In the formative study, P7 discussed how he wanted debugging support from
a historical oracle to not only function as a repository of prior knowledge but to
serve as proactive aide, not unlike a pair programming partner, by coming up with
alternative lines of inquiry and suggestions. We use these follow-up questions as
a first pass at attempting to provide this pair-programming type assistance when
reasoning about what log value(s) may mean and how to address them.

Through directly supporting composition of logs, MMAI can provide more tai-
lored support for reasoning about log statements and values through the creation of
semantically-meaningful relationships. When a user creates a group of mmlog state-
ments that are not in the same node3, MMAI generates a new, synthesized history
that organizes and merges the constituent nodes’ versions, log statements and val-
ues, and any additional meta-information into a singular history that a new LLM
agent can reference when formulating an answer. In this way, the user can ask
more complicated questions regarding the relationship of multiple functions, log
values, and versions across time that would otherwise be very difficult to ask in a
de-contextualized format. For example, this synthesizing of information allows for

3If the mmlog statements are in the same node, there is no need to generate a synthesized history,
given that the node has access to each mmlog statements’ historical data, including prior versions and
log values.

134 Chapter 8. MMAI: Accelerating Sensemaking with Logs and LLMs

a user to ask “Why does box go from an object to undefined when this function’s
code changed?” – with the synthesized history knowledge, our system and the LLM
can isolate when the log value was last not undefined, what was changed since that
point in time between both implementations, and (hopefully) come to an answer.

8.4.3 Implementation

MMAI is a Visual Studio Code extension for the JavaScript and TypeScript program-
ming languages. Considering it leverages the Meta-Manager architecture, some fea-
tures are identical to that system, including the node matching algorithm utilizing
our Firestore database. Logs are now, additionally, stored on the database and asso-
ciated with a parent code version.

Log Data Design and Processing

In designing MMAI, we extended the Meta-Manager architecture to allow for han-
dling of log statements and values with our own Node.js package for logging. As
a brief reminder, Meta-Manager pushes new versions of each node to the database
on file save, given whether or not the node has experienced a change that should
be saved to the database (see Appendix A for a full discussion on Meta-Manager’s
event model). Capturing log values at the code version level introduced some com-
plexities to this model that required design and implementation consideration.

One challenge was how to capture whether or not the code was run and what to
count as a run. Given that MMAI is supporting web development, specifically, the
event-based nature of such development means that code is nearly constantly run-
ning and many paths of execution are only triggered when a certain event, such as a
click, occurs. Thus, one version of the code may have hundreds of runs or none at all,
depending upon what part of the code the user is testing. For simplicity’s sake, we
utilize the VS Code API’s native debugging API event, onDidStartDebuggingSession,
as our ground truth for whether or not the user is running their code. Each debug-
ging session has a unique id that we associate with any emitted log values from
mmlog as a way of grouping runs as an additional mechanism for organizing log val-
ues. Notably, there are other ways of running code, aside from VS Code’s debugging
functionality, such as using the command line, that MMAI does not currently listen
for, which future improvements to the system should account for.

When the user is debugging and has mmlog calls in their code, mmlog transmits in-
formation to MMAI which handles the delegation of the log statement and values to
the corresponding node. The mmlog package acts as a wrapper around console.log4

4Unfortunately, for a user to receive the benefits MMAI provides, despite mmlog acting as a wrapper
around console.log, a user must use mmlog, given the connectivity between the mmlog package and
the MMAI VS Code extension and given the matching logic within the MMAI extension for finding
invocations of mmlog to track.

8.4. Overview of MMAI 135

and transmits any arguments to the mmlog call on a socket connection shared be-
tween MMAI and mmlog. mmlog values appear in the user’s console as normal, de-
spite the fact that their output is also handled by the MMAI extension and saved to
our database. In order to match mmlog calls between the user’s source code and the
actual log values received at run time, mmlog additionally transmits the stack trace,
which includes the file name and line number. MMAI takes that stack trace and
searches for a matching file name in its set of managed user source code files. If a
file is found, MMAI transmits the mmlog statement and values, along with the line
numbers to MMAI’s document manager which finds the node that contains that line
number and mmlog statement, such that the node can add the log data to its history
(see Figure 8.5 for an example of how log data looks in history). In situations where
a file is not found, which may happen if the file is not managed by MMAI (such as if
the file is in an external package or the file is not a JavaScript or TypeScript file) or the
file has been renamed since MMAI was instantiated (which could be remedied by
listening for VS Code’s file renaming event), the emitted log value will be ignored.
To reduce the likelihood that a particular value is sent to the database too many
times and is too large, we run a simple heuristic of whether or not a just-received
value is the exact same time as the last seen log value received from the same mmlog

statement and was just appended to the node’s history (i.e., was seen within the last
second). Other techniques for guarding against storing too much data will need to
be added in the future. Such techniques may include both technical improvements,
such as additional heuristics for limiting what is sent to the database, and user in-
terface improvements, such as warning messages stating a particular log value will
not be tracked when a user logs a too-large value (such as the whole DOM) to cue
the user in that they will need to be more selective if they want a particular value to
be tracked.

One advantage of handling log statements and values in a VS Code extension
is that we can specifically track the log statement lines in the user’s source code.
Similar to how nodes are handled, each mmlog statement is given a unique iden-
tifier derived from the parent node’s ID and the contents of the mmlog statement.
If the user edits their mmlog statement (e.g., mmlog(’ringo is’, myDogRingo()) to
mmlog(’ringo is’, myDogRingo(), myCatEevee())), MMAI detects that edit and
updates that mmlog statement’s ID, both within the extension and in the database,
such that future mmlog values are associated with the same mmlog history.

GPT-4 Support

For the GPT-4 support, we chose to have each node of the AST not only manage its
code versions and log statements and values, but also manage an intelligent agent in
the form of a unique LLM instance that is given access to that node’s history and log
data. To reduce the potential monetary and computational cost of having many run-
ning LLM agents, only some of which are necessary, we only “activate” (i.e., create
the connection to the OpenAI API for that node and give access to history) a node’s

136 Chapter 8. MMAI: Accelerating Sensemaking with Logs and LLMs

FIGURE 8.5: How an mmlog version appears in the MMAI database. One code version owns a collec-
tion of these mmlog versions dependent upon how many mmlog statements the MMAI node has at a
particular version and how many times each mmlog statement is invoked.

instance when a user first clicks the star icon for a mmlog statement. Each node’s
code versions (see Figure A.2 for an example version) and mmlog version (Figure 8.5)
are transformed into a string representation that are joined together to make a long
historical record, sorted by time, and fed into that node’s GPT-4 instance (see Ap-
pendix B for prompts). We chose to do this such that the LLM could ingest more
specific data as opposed to all of the history across, e.g., the whole project, and suf-
fer from too much context. Further, ingesting that much data would likely exceed
the token limit for the model (as of writing, GPT-4 supports a context window of up
to 128,000 tokens). Nonetheless, if a node has a particularly long history or contains
many log statements and values, there does exist a possibility that the history may
exceed the token limit, in which case we batch calls to the OpenAI API when query-
ing on its history. While batching calls may work, there also exists the possibility
that a particular query may not require access to the whole history, such as in the
case of finding other related mmlog statements – future versions of MMAI may ben-
efit from having more strategic history ingestion and prompting given a user’s line
of inquiry.

8.5. Discussion 137

8.5 Discussion

We position MMAI as an exploration of to what extent more robust and domain-
specific meta-information collection can assist with developer sensemaking when
assisted with LLMs. Without a proper user study, it is hard to know for certain
whether developers appreciate the class of features supported by MMAI and whether
it does, indeed, cut down on the amount of lower-level information scrounging and
synthesizing work typically required during print debugging. Nonetheless, we posi-
tion this work as an introductory exploration into how we can re-frame AI assistance
in programming as an opportunity for cutting down on the tedious work often re-
quired when developing code. These small productivity gains can add up over time
and relieve cognitive strain that can be better applied to more creatively-fulfilling
tasks, such as designing a coding solution to bugs.

MMAI and its design, like the prior systems, were initially motivated by think-
ing through challenges I have experienced in my own development and how hu-
man behavior is often at odds with the design of more formal software develop-
ment tools. As discussed previously in Section 8.3.2, more sophisticated debugging
support does exist and the productivity gains one can experience through becoming
well-versed in using debuggers can be significant. Nonetheless, despite having used
debuggers previously, I find myself still almost always choosing to use print debug-
ging rather than a debugger, given the much lower cost and the nature of my path
of inquiry. The insight that print debugging is popular is not a novel contribution
of this work, yet little tooling has attempted to actively support this practice, with
the most relevant and recent work focusing primarily on re-shaping log value data
but not supporting other aspects of print debugging [112]. This work seeks to cele-
brate print debugging as a useful practice that should not be shamed or written-off
as “inefficient” when compared to more powerful mechanisms.

When placing MMAI in the context of the other work presented in this disser-
tation, many of the same challenges and themes arise. In returning to the concept
of “information scraps” and meta-information, more broadly, log values when print
debugging share the ephemeral nature of this class of information, in that it typically
has been only useful in the moment it is generated, despite having the potential to
answer later questions. However, these log statements made in the moment to sup-
port print debugging are often not written with the intention of having long-term
utility, leading to terseness that makes their interpretation difficult. Indeed, multi-
ple interview participants expressed that they systematically “clean up” these logs
once they are done debugging, such that they do not interfere with the business logic
of their code or take up valuable space in the console. This tension between keep-
ing this information to support later sensemaking versus removing the information
so it does not interfere with other development-related tasks is partially rectified in
MMAI’s adopted architecture from Meta-Manager which airs on the side of “save
everything” considering database storage is relatively cheap in comparison to the

138 Chapter 8. MMAI: Accelerating Sensemaking with Logs and LLMs

human cognitive power of recall. Nonetheless, supporting other information scrap
management tasks, such as curation, may make sense when considering extending
this work.

Another advantage of the “save everything” design principle in this work is ex-
ploring how that data can be utilized by LLMs. A task LLMs are particularly good at
is summarizing and retrieving data [268] – we take that idea and utilize it for retriev-
ing log statements and values that can act in service of assisting with a developer’s
reasoning about code behavior when print debugging. Considering we are using
MMAI largely as a retriever and summarizer of a large repository of information
as part of the retrieval augmented generation class of LLM usage, we additionally
require MMAI to include references to what information it used when coming up
with its answer. In this way, we expect that developers will have an easier time as-
certaining whether or not an answer is trustworthy, given that they can reference
the citations the system is required to produce upon generation. While this is not
necessarily a “fool-proof” solution, it is a first step towards assisting in bug isolation
and reasoning in a more precise manner than context-free usage of LLMs, given the
large amount of contextual and historical data we are feeding the model.

8.6 Future Work and Conclusion

Some technical issues with MMAI may arise that require more significant consider-
ation. One such issue is what to do when an output value is too large to store, such
as if the user chooses to log the entire DOM on a web page. We attempt to mitigate
potentially spamming the database by only pushing when the current value is dif-
ferent from the last-saved value and/or some time has passed since the last push
to the database, but this approach can still result in large objects being pushed in-
termittently. Other, more robust potential solutions include fragmenting the object
across multiple database entries or otherwise minifying or truncating the represen-
tation, such that it can be stored. An alternative solution is to grant the user more
control in terms of what is logged – indeed, when discussing logging objects with
P7, they mentioned that they are often only interested in one or two properties of
a large object, yet specifying those specific properties can be onerous. JavaScript’s
console.log method logs the actual object in a “collapsed” or summarized form
then allows the user to “expand” the object properties they are interested in and
lazily loads the referenced values – one can imagine adopting a similar design deci-
sion for mmlog in which values are only stored indefinitely if the user interacts with
them in the user interface, or are, at the very least, prioritized for later retrieval and
are marked for the LLM as particularly important. Having further insight into the
intent behind why a user is choosing to log a particular value could lead to smarter
decisions when choosing what information to push to the database and how to use
that data.

8.6. Future Work and Conclusion 139

In the current implementation of MMAI, we only capture values specifically
logged using mmlog. This was an intentional design decision since we wanted to mir-
ror the development practices developers are doing with, e.g., console.log when
print debugging. Nonetheless, this choice results in us not capturing other infor-
mation that may be helpful for a developer and an LLM agent when interpreting
mmlog values post hoc and further contextualizing buggy code. Additional data fu-
ture versions of MMAI may consider supporting include other information logged
to the console (e.g., error messages), and output data, like the HTML of a webpage.
Output data, especially graphical output, could be helpful in further understanding
how a bug is manifesting. When considering the scenario described earlier (Section
8.4.1), Linda first realized she had a problem in her code given the graphical out-
put, with a box being rendered incorrectly. If she or another collaborator wants to
later understand the bug fix she applied, a capture of the graphical output may be
more useful in remembering what the bug was, as opposed to the logged negative
numbers. Print debugging, and the log statements and values produced during that
process, represent a line of inquiry that is often motivated by both information that is
gained through the log values but also information that is generated elsewhere – cap-
turing more of that line of inquiry may result in a more thorough understanding of
the developers print debugging practices and may make reasoning about and ques-
tioning of history at a later point easier. One can imagine an extension to MMAI that
allows for automatic screenshot capturing when the code is run (i.e., when the user
runs a new version of their file and the new output is displayed in the web browser)
with a web browser extension (not dissimilar to Meta-Manager and its shared con-
nection between browser and VS Code extensions). However, this introduces a new
design challenge in terms of understanding how that output should be associated
with the code and log history – considering the output is an amalgamation of some
or all of the various code node’s implementations, how should an output be asso-
ciated with each of the nodes? One design idea could be adopting the technique
used in the WhyLine, in which a developer can “point” to the parts of the output
that are relevant [130], but this comes at the cost of introducing additional “work”
for a developer, which this work largely tries to avoid, so future considerations are
required.

Another effect of only capturing log values generated with mmlog is that this
requires developers to use an external package and editor extension in order to re-
ceive any of the benefits of this work, as opposed to this support being natively pro-
vided by current editors and logging functions, like console.log. Similar to Meta-
Manager and how a developer needs to both have a VS Code extension and Google
Chrome browser extension in order to experience the full benefit of that system, we
position this work as an exploration of the potential benefits of having this more
tightly-integrated working system, in which components of the system are aware
of other, relevant contextual meta-information generated in other usually disparate
systems. Like Meta-Manager, this approach introduces some risk to developers in

140 Chapter 8. MMAI: Accelerating Sensemaking with Logs and LLMs

terms of information privacy and having their activities potentially monitored. Fu-
ture work may explore how to allow for better information protection and filtering
on the developer’s end.

Some future work from Meta-Manager is still relevant here given the relation-
ship between the two projects, such as supporting annotating or sharing specific
code versions with collaborators. In the context of print debugging, one can imag-
ine “saving” a user’s path of inquiry that led to their identification and fixing of a
bug such that the information can be documented in a bug report or pull request de-
scription. This “saving” may also be useful for communicating with collaborators,
such as when working in quality assurance testing, where a tester may find a bug
and needs to share how a bug is encountered and behaves with a different devel-
oper. This practice of transforming a user’s sensemaking process into a shareable
format is not dissimilar to the work discussed in the curation chapter (Chapter 5)
and lessons learned from that work may apply here.

Given MMAI’s implementation as a VS Code extension and the system’s knowl-
edge of a user’s source code, some additional functionalities to support print debug-
ging are possible. Functionalities future versions of MMAI may consider supporting
include removing no longer relevant mmlog calls if the user wants to clean up their
code, directly importing code from LLM responses into the editor, or automatically
inserting mmlog statements into the code if the user wants to log every instance of a
variable or function call. In the current version of MMAI, we chose not to modify the
user’s code because we did not want to potentially introduce issues given uncertain-
ties around potentially improperly applying an edit and given our lack of certainty
in the correctness of our LLM’s generated code. Nonetheless, considering a large
issue in print debugging is the resulting clean up of log statements and their inter-
ference with the console content and business logic of code, automatically removing
log statements is an obvious and powerful solution to this problem. We chose to
partially address this challenge through supporting filtering of mmlog values and al-
lowing users to directly manipulate the MMAI interface to make it clear what mmlog
statements they wanted to focus on during their current print debugging session.

The space of development tasks that may be offloaded or, at the least, accelerated
with AI is vast. Yet, tools focus primarily around code generation and, to a slightly
lesser extent, code understanding. In this work, we take AI capabilities and place
them in a different context, namely supporting print debugging. An obvious and
planned next step for this work is to perform a user study to see to what extent
MMAI actually succeeds in helping users make sense of and resolve bugs when
performing print debugging.

When looking at the future of software engineering, it is important to keep the
“engineer” in engineering. The anxiety that LLMs are introducing into many differ-
ent practices, including software engineering, about job security and what the future
of these industries will look like given the disruptive nature of these technologies is
making people apprehensive about even joining the field. As an academic, I believe

8.6. Future Work and Conclusion 141

it is paramount we try and use these technologies to augment and accelerate the
skills developers already have as opposed to introducing technologies that replace
the engineer. These technologies are not going away, so we have to learn to use them
for good.

143

Chapter 9

Conclusion and Future Work

9.1 Summary of Contributions

The series of work discussed in this thesis explores the utility of supporting de-
velopers in both authoring and utilizing meta-information to better make sense of
code and documentation. Specifically, the systems provide platforms for author-
ing and sharing useful and contextualized information about code (Adamite, Cat-
seye, Sodalite), unify various forms of meta-information into one platform with a
single interaction method (Catseye, Meta-Manager), utilize artificial intelligence for
accelerating sensemaking with meta-information (MMAI), and demonstrate how
meta-information may be used to overcome known barriers in documentation usage
and answer long-standing, hard-to-answer questions about code (Adamite, Sodalite,
Meta-Manager).

My work has made the following contributions:

• A set of key design properties that should be considered and accounted for
when building meta-information systems for programming (chapter 1).

• A review of literature around developer information needs, systems devel-
oped to support some of these needs, and how meta-information about code
has or can be used to combat these challenges (chapter 2).

• Identifying that short, easy-to-author notes, when attached to programming-
related documents including code and documentation with anchors, can ad-
dress known challenges in information tracking and usage [104, 107] (chapters
3 and 4).

• Adamite, an annotation system designed with specific features to use meta-
information as annotations on documentation to overcome known barriers in
using software documentation [104] (chapter 3).

• Evidence that developers’ notes can be useful for other developers when prop-
erly presented given the implicit context communicated through annotated
text [104] (chapter 3).

144 Chapter 9. Conclusion and Future Work

• Identifying that annotations and their anchor points can act as a unified in-
teraction design for capturing and associating different types of code-related
meta-information [107] (chapter 4).

• Catseye, a code annotation system, with features to help a developer keep track
of code-related meta-information using a unified annotating interaction [107]
(chapter 4).

• A literature review of information needs developers have when making sense
of and curating ephemeral, short-form information to assist in sensemaking
tasks (chapter 5).

• An exploration of design considerations and probes on how to manage large
sets of ephemeral data (i.e., annotations) in a complex and oft-changing envi-
ronment (i.e., source code) where re-attachment and curation are non-trivial
(chapter 5).

• Identifying that documentation text, when anchored to code, and the stability
of that code anchor can be used to assess how out-of-date some documentation
is (chapter 6).

• A documentation authoring and maintenance system, Sodalite, that utilizes
code meta-information to support developers in assessing the validity of doc-
umentation and finding appropriate parts of the code to document [106] (chap-
ter 6).

• A mapping between historically challenging-to-answer questions about code
and the types of meta-information that may be used to answer those questions
(chapter 7).

• A system, Meta-Manager, that can collect, index and store a larger collection of
code editing and provenance meta-information that has never previously been
collected at scale for answering otherwise unanswerable questions about code
history [105] (chapter 7).

• Identifying a set of queries that developers have when performing print de-
bugging that are not currently supported in modern tooling (chapter 8.3.2).

• An LLM-powered system utilizing retrieval-augmented generation, MMAI,
that captures code meta-information at scale, including output data, to sup-
port print debugging (chapter 8).

• A series of lab studies showcasing the usability and utility of these tools in
supporting developers’ varied information needs in different contexts.

9.2. Discussion and Future Work 145

9.2 Discussion and Future Work

In developing the aforementioned systems, including determining design and func-
tionalities, we gained insights into ways in which developer meta-information may
be collected, transformed, and presented to assist in developer sensemaking. Below,
I briefly reflect on some of the implications and lessons learned from that explo-
ration, along with avenues for further inquiry based upon these implications.

9.2.1 Designing with Information Ephemerality In Mind

When beginning this thesis, I was initially drawn to the idea of supporting lightweight
developer sensemaking through notes and annotations due to the seemingly-untapped
market of developer note-taking tools. It was only upon beginning to do more lit-
erature review that it became clear that developers were, indeed, taking notes, but
there was no single tool or practice that was ubiquitous. Instead, developers natu-
rally did what other information workers often do and utilized implicit cues such
as open files or tabs for assisting in recall and their natural workspace (i.e., source
code and code comments) for jotting down small notes such as open to-do items.
Code comments, in particular, seemed, as a “user interface” for note-taking, to be at
odds with the paradigm of note taking – code comments are represented within the
source code, meaning they will persist indefinitely, whether that be in the current
source code or in a commit contained within a VCS. Further, they do not provide
support for richer expression of thought or structuring of information, such as cre-
ating follow-up comments in the form of a reply.

Catseye, as opposed to code comments, explores more directly supporting infor-
mation ephemerality with respect to developer note taking. The conventional design
approach when creating an information system is to allow information to persist in-
definitely, be accessed indefinitely, and be editable indefinitely, such as in the case
of Google Drive, where any document you have access to will exist in your drive
unless the permissions are changed or it is deleted (and, even if a Drive document is
deleted, it is still accessible in a trash bin for a finite period of time). When starting
the curation work (Chapter 5), we were initially motivated and bound to a similar
design goal – make annotations persist as long as possible (i.e., keep them attached
to source code) such that the user can derive value from them as long as possible
and do something with the annotations at a later point in time. However, the more I
reflect on this work, the more I wonder whether perhaps that is the wrong direction
and the correct direction is “how do we get rid of erroneous or no longer useful in-
formation as quickly as possible”. Indeed, prior work (e.g., [21, 151]) and my own
experiences using Catseye (Section 4.6 and Section 5.4) suggest that much of the in-
formation generated is irrelevant past a certain, finite window of usefulness. Not all
information is created equally, yet systems often treat the information as such.

Future work may benefit from intelligent mechanisms for automatically curating
content. In the context of annotation management, one potentially fruitful avenue

146 Chapter 9. Conclusion and Future Work

may be intelligently inferring relevance to a particular user and the relative impor-
tance of an annotation. Thus, curation becomes a function of two different needs
that can be calculated dynamically. Meta-Manager showed the promise of keeping
track of information while not requiring anything of the user and MMAI showed
that this information can be used by an intelligent agent to assist in querying. Rele-
vance to a user could similarly be calculated through a query or through knowledge
about the user’s current task, which may be inferred from edit patterns [118] and
code locations of interest [45]. How to intelligently determine the importance of an
annotation is less obvious – ideas we have had include calculating how often the an-
notation is revisited, how thorough it is (i.e., does it have multiple anchors? Replies?
Long annotation content?), and how recently it was created. A truly intelligent user
interface for these annotations could have annotations hidden from the user once
they have lost relevance to them, with the expectation they likely will never become
relevant again, save for if we can ascertain that the annotation will accelerate a later
user’s sensemaking.

9.2.2 Designing for the Software Engineer of Tomorrow

Much of my work has been predicated on both understanding the information needs
of software developers given the large body of Software Engineering and HCI re-
search that discuss these needs, and considering what developer meta-information
may be utilized to address those needs. For example, Catseye, Meta-Manager, and
MMAI all explore mechanisms for using meta-information to assist in code author-
ing, comprehension, and debugging, respectively. However, this meta-information
capture and transformation may look vastly different in the coming years if devel-
opers are not actively writing code and, instead, guiding AI tools to write code.
Developers will most likely still need to understand the existing code to design
their changes – what meta-information will be most useful for this next developer
to formulate, e.g., the correct prompts for a LLM? How will harnessing this meta-
information scale as more of a code base becomes sourced primarily from AI?

How I see software development moving is that understanding code at the syn-
tax level will become less important as understanding the intent behind its design
and how it was created will become more important. With code generated by AI
systems becoming more common, tooling solutions for tracking the creation, evolu-
tion, and intent behind this code will become more relevant. Software development
has largely followed a pattern where programming is abstracted further and further
away from the actual machinery with tooling to support these higher levels of ab-
straction. For example, in the move from writing assembly code to writing C code,
tools were needed to better help with diagnosing memory allocation bugs – in the
move from writing code to guiding AI systems (e.g., ChatGPT, GitHub CoPilot) to
write code, I see an expansive and rich design space for improving the usability of
these tools and the comprehension of the code created by them through leveraging
meta-information generated in this authoring process. My recent work with MMAI

9.2. Discussion and Future Work 147

begins to probe on this thread by utilizing LLMs to support software development
tasks not directly involving code generation or understanding, which is primarily
what AI code-development tools have been used for. Future work, in moving to-
wards an “IDE of the Future”, may similarly explore what emergent tasks come out
of software development using LLMs (e.g., prompt (re-)authoring is now a common
activity amongst software developers [148]) and what tooling support is necessary
to support these tasks versus what classic software development tasks are no longer
relevant, if any.

A related research thread, when thinking about how classic software develop-
ment challenges may change when using LLMs for development, is considering
what new “hard-to-answer” questions [139], if any, emerge during this paradigm
shift. The Meta-Manager, specifically, was designed to collect contextual, authoring-
time meta-information at scale that could be used to answer some of the hard-to-
answer questions derived from LaToza and Myers’ seminal paper [139]. Some of
the questions described in the paper, such as questions about how to best imple-
ment some code or how to refactor some code, can potentially be answered by an
LLM agent (whether or not its answer is correct is a different question). Other ques-
tions, such as questions of design rationale, which were the largest blockers, rely
upon extensive knowledge of the code’s history and sometimes information that is
invisible to an LLM (e.g., web activity, discussions amongst team members, GitHub
PR descriptions), meaning such questions cannot currently be answered by an LLM.
Perhaps it is too early yet to do a follow-up study to LaToza’s work that seeks to
explore whether the hard-to-answer questions have shifted in terms of difficulty or
if new questions have emerged, given that LLM-authored code has not been around
long enough for developers to know how it is reshaping their question-asking and
answering. Still, future work would benefit from understanding the information
support needs of developers in a future filled with LLM-generated code.

9.2.3 Designing for Meta-Information as a First-Class Entity

The rise of LLMs holds implications for meta-information. Information provenance,
especially, is only going to become more important as users in a variety of contexts
need to ascertain where some information came from. For example, in the educa-
tion sector, there is ongoing discussions on how to determine whether assignments
and tests are actually being completed by a student versus by an LLM – where is the
content in the assignment originating from. Given concerns around generative AI
in a variety of disciplines, tracing information to its origin is becoming more nec-
essary universally. In the context of software development, I showed that this can
be possible given extensive, domain-specific tooling with the Meta-Manager and
its connectivity between IDE and browser. While this approach was successful,
researchers reasonably expressed some hesitance around sharing where and how
some information (code, in this case) came to be. Further, Meta-Manager only oper-
ates one layer of provenance deep – in other words, if a user copy pastes code from

148 Chapter 9. Conclusion and Future Work

Stack Overflow, but the code on Stack Overflow was generated by an LLM, Meta-
Manager only knows that the code came from Stack Overflow. Designing solutions
that can both capture meta-information, including historical and provenance data
across platforms and “layers” of sharing, while also respecting a user’s right to pri-
vacy will become even more necessary as more generative AI content proliferates
our day-to-day lives. More extensive information provenance work can also help
with answering other research questions – for example, in the context of software
engineering, researchers have already begun wondering whether code produced
by LLM’s introduces more build breaks [24], a question which cannot be answered
without code provenance meta-information since AI-generated code is typically in-
discernible from developer-authored code.

More broadly, my research has shown that collecting large amounts of highly-
contextualized meta-information can assist in sensemaking, both for an initial au-
thor and later user. Given how storage sizes have ballooned over time and database
services have only gotten more powerful, storing this meta-information is not nec-
essarily the challenge. The challenge comes in making this information useful. One
design technique nearly all my systems utilize that has been effective is creating
strong, traceable, and visual connections between meta-information and the original
information source it is derived from. My annotation work, in particular, succeeded
primarily due to the in-context nature and presentation of the annotations. My later
works, especially Meta-Manager and MMAI, explored how to introduce new dimen-
sions to that information connectivity through exploring relationships such as time,
and new presentations, including visualizations. Sodalite and MMAI additionally
showed how utilizing that information connectivity can support new tasks, such as
determining documentation accuracy, and that meta-information connectivity and
the context such a relationship creates can be utilized by an LLM for completing
higher-order intelligence tasks, such as reasoning. Future work would benefit from
exploring other ways of making meta-information more valuable through further
exploring the design space of how to present meta-information, especially when
dealing with competing information dimensions, and how to transform and use
meta-information and information connections for serving domain-specific tasks. In
Chapter 1, I presented some key design properties that may similarly be valuable
to consider when capturing other types of meta-information which were not ex-
plored in this thesis, given a particular domain. Collecting more meta-information is
paramount in order to serve these design and research goals, so I once again implore
researchers to treat meta-information as a first class entity.

9.3 Concluding Remarks

Developing code is hard. Anyone who has written code can attest to this – given the
sheer amount of information management work involved in balancing tasks, design-
ing solutions, navigating through an IDE, and so on, developers are under intense

9.3. Concluding Remarks 149

cognitive strain, while often amassing a large set of highly-contextualized informa-
tion that is subsequently thrown away or remains tacit within the developer’s mind.

My research has explored mechanisms for both extracting developer’s tacit knowl-
edge in the form of meta-information and presenting it to accelerate a later de-
veloper’s sensemaking through leveraging design properties of meta-information.
Through this research process, I have blended insights from the fields of Human-
Computer Interaction and Software Engineering in order to serve developers’ spe-
cific information needs. HCI research in other domains, such as web browsing and
online shopping, has shown that capturing aspects of an initial user’s sensemaking
journey can accelerate a future user’s sensemaking when performing a similar task.
In the context of Software Engineering, other research projects primarily focused
on assisting developers in completing sensemaking tasks, such as understanding
unfamiliar code using in-situ code explanations, while not leveraging this virtuous
cycle of sensemaking to assist in other cognitively-demanding aspects of software
development. My projects, such as Adamite and Meta-Manager, show that such
an approach can be adapted to an information and context-rich discipline such as
software development given proper tooling and design.

As the nature of software development evolves with the proliferation of AI tools,
there is a need to continue understanding the impact these tools have on developers.
Much of my work has been inspired by understanding that human sensemaking, es-
pecially when completing a cognitively intense task such as programming, is messy
and tooling solutions are often inadequate in terms of supporting the messiness of
such information management. There are large unknowns in terms of how AI tools
will change software development – my hope is that the creative parts remain in the
hands of the developers and AI tools can act as supplementary aids that adhere and
adapt to a developer’s sensemaking when performing creative work. Such AI sup-
port can come in the form of adopting AI tools to the virtuous sensemaking cycle,
where meta-information serves as training data to inform the tool about whatever
contextual knowledge is necessary to support my development work. By keeping
the developer in the loop, I believe we can create a better developer experience and
more reliable code for the eventual end user.

151

Appendix A

Meta-Manager Architecture and
History Model

The basic structure of Meta-Manager’s architecture and historical model is as fol-
lows:

• On VS Code launch, Meta-Manager attempts to match the project to a known
entry in its database through using the GitHub ID (which follows the structure
“PROJECT_OWNER/PROJECT_NAME”)1.

– If a match is found, Meta-Manager ingests all of the information it has
for that project, which follows the structure FILE has many NODES which

have many VERSIONS.

– If no match is found, continue to next step.

• Meta-Manager traverses through the AST for each file that is a legal JavaScript
or TypeScript file.

– If Meta-Manager has found a match for the project, Meta-Manager at-
tempts to match the nodes2 it is finding within the AST to known nodes
from the database.

* Matching nodes utilizes multiple heuristics including text matching
between the last known version of the node and the current node,
if the node is named (e.g., a non-anonymous function) and whether
the names match, and how close the locations between node and
database node match (i.e., does the node we are currently compar-
ing have the same parent node(s) as the node from the database?).

– For each node, either take the closest matching node’s already-unique
ID or generate a new unique ID – ID’s include the name of the node,
a colon, then a unique string created by the uuid package [250] (e.g.,
recursiveSearch:ccaeaf0c-53bc-45dc-a76e-44a08a5a3a2f).

1We get the GitHub information using the GitHub API.
2Note that the nodes we discuss are nodes that are direct parents of block nodes (i.e., a left curly

brace with code contained therein followed by a right curly brace) – technically, there are many other
nodes, such as expression nodes and identifier nodes, that Meta-Manager does not perform this com-
parison on.

152 Appendix A. Meta-Manager Architecture and History Model

FIGURE A.1: A simplified version of how Meta-Manager’s data model and architecture look on a file
called “example.ts”.

• For each node, instantiate the meta-information event listeners and function-
ality.

– Some events are derived from native events within VS Code that each
node can subscribe to. This includes:

* onDocumentChange: if some content within the bounds of the node’s
location is edited, capture whatever change occurred and add it to
the node’s change buffer as a new version.

* onDocumentSave: if the node has items in its change buffer, push those
to the database.

* onCopy3: if some content within the bounds of the node’s location
is copied, capture the code that has been copied and wait for paste
event.

* onPaste: if a paste occurs within the bounds of the node’s location,
capture the code that has been pasted and save any additional meta-
information, including web-based meta-information or the copied node’s
information.

3The VS Code API does not surface the copy or paste events so we use a workaround to
emit an event when a copy or paste occurs – see this Stack Overflow post for more informa-
tion: https://stackoverflow.com/questions/44598894/in-a-vs-code-extension-how-can-i-be-notified-
when-the-user-cuts-copies-or-paste.

https://stackoverflow.com/questions/44598894/in-a-vs-code-extension-how-can-i-be-notified-when-the-user-cuts-copies-or-paste
https://stackoverflow.com/questions/44598894/in-a-vs-code-extension-how-can-i-be-notified-when-the-user-cuts-copies-or-paste

Appendix A. Meta-Manager Architecture and History Model 153

FIGURE A.2: How a version of a node appears in the Meta-Manager database on Firestore [61]. Note
that the id of the version includes the node ID and the time at which the version was captured. This
version does not include any additional meta-information, such as web activity.

– Other events are specific to Meta-Manager, such as transmitting informa-
tion to the Meta-Manager pane when the node is selected. For full de-
tails on all Meta-Manager events, see the full implementation on GitHub:
https://www.github.com/horvathaa/meta-manager.

Once the matching algorithm is completed, the Meta-Manager’s internal repre-
sentation of the data is similar to Figure A.1.

A version of a node saved on the database would look like what is shown in
Figure A.2.

https://www.github.com/horvathaa/meta-manager

155

Appendix B

MMAI GPT-4 Prompts

B.1 Pre-Processing History Prompt

The following prompt is generated for each mmlog version (see Figure 8.5 for an
example of how such a mmlog version is formatted). The version is joined with the
corresponding MMAI code version.

• $codeLine is the mmlog statement, e.g., Figure 8.5, mmlog.location.content.

• $value is the mmlog value, e.g., Figure 8.5, mmlog.value.

• $codeVersionId is the unique ID for a particular code version, e.g., Figure A.2,
id or Figure 8.5, versionId.

• $codeVersionCode is the code content at a particular code version, e.g., Figure
A.2, location.content.

• $runId is the unique run ID generated by the VS Code Debugging API (see
Section 8.4.3), e.g., Figure 8.5, runId.

• $logId is the unique log ID for the unique mmlog statement on that code ver-
sion, at that time (see Section 8.4.3), e.g., Figure 8.5, key.

• $time is when the log statement was invoked.

The prompt returns a summarized and indexed version of each mmlog statement
execution, $summary, that is kept in that node’s instance of GPT-4’s memory.

B.1.1 Prompt

Summarize the output for the following code: $codeLine. Across time, this line of
code has produced the following values below.
$codeLine HISTORY
for each $value of $codeLine

The output came from code version $codeVersionId and the following code: $codeVersionCode.
The output was created on run $runId and generated the following output value:
$value.
The output came from code version $codeVersionId and the following code: $codeVersionCode.

156 Appendix B. MMAI GPT-4 Prompts

The output was generated on run $runId.
The log ID was $logId.
The time was $time.
end for

B.2 Default User Query Prompt

The user query prompt utilizes the output of the Pre-Processing History Prompt,
$summary, and formats and appends the user’s query to it, $query, along with addi-
tional instructions on how the LLM’s output should be formatted for post-processing.

B.2.1 Prompt

You are a code history and output oracle. A user is asking you this: $query. Use the
provided history data below, under the header "### HISTORY DATA ###" to answer
the user’s question. Be succinct in your answer. Use code examples when necessary.
If any code examples include backticks, replace the backticks with regular quote
characters (i.e., ""). If you provide a block code example, ensure that the beginning
of the block code example begins with three back ticks and the end of the block code
example ends with three back ticks. Do not discuss the semantics of the log function,
"mmlog".
HISTORY DATA
$summary

END HISTORY DATA
Include version IDs, run ids, and log ids under a header "### References ###" that
you use when coming to an answer. Below "### References ###", each referenced
version ID should be under a header "### Version ID ###" and each ID should be on
its own new line (i.e., no preceding dashes or bullets). Valid version IDs will follow
the format "someFunctionName:someUUID:someTimestamp".

Below "### References ###" and "### Version ID ###", each referenced log should
be under a header "### Log ID ###" and each log ID should be on its own new line
(i.e., no preceding dashes or bullets). Valid log IDs will follow the format "some-
FunctionName:someUUID:someCallToTheMMLOGFunction". When printing a log,
print the log ID, followed by the run ID referenced for that log (which will be in the
form "someUUID"), and the time at which the run happened. Example: "some-
FunctionName:someUUID:someCallToTheMMLOGFunction on Run #someUUID -
7/24/2024, 2:41:41 PM".

If you use a version ID, run ID, or log ID in your answer, you must include it in
the "### References ###" section. Ensure that the version ID, run ID, and log ID are
accurate and correctly formatted. Do NOT wrap the IDs in backticks or quotes.

Provide 3 follow-up questions a developer may want to ask, given your answer,
under the header "### Questions ###". Each question should be on its own new line
(i.e., no preceding dashes or bullets).

157

Appendix C

Chapter 3 Study Replication
Materials

C.1 Preliminary Study Materials

These are the materials used for the preliminary API learning task discussed in
Chapter 3, Section 3.2.

C.1.1 Protocol

Notes

This is the script that was used for each study session. Parts highlighted in yel-
low were instructions for myself to complete during the session. The preliminary
study consisted of two “phases” – in Phase 1, participants were instructed to author
annotations, while, in Phase 2, participants were instructed to use annotations.

Phase 1 Script

Hello, my name is Amber Horvath. We are interested in understanding the role of
note taking during API learning tasks and how developers’ notes may benefit other
developers. This study is composed of three parts - the first part will be a short
interview about your background and current note-taking habits, if you have any
habits at all, the second part will be an API learning task which will have you taking
notes about what you learn about the API, and the third part will be another API
learning task where you will have access to other developers’ notes. The second and
third tasks will be done in the Python programming language using Apache Beam,
a relatively new distributed data processing API.

Before we begin with the preliminary interview, I’d like to have you sign this
consent form. Let me know if you have any questions. You may also notice there’s
a question about recording your audio and your screen - please let me know if you
are okay with that or not.
Hand out consent form with particular attention as to whether they’re ok being
screen recorded or not
Okay, so we will now begin the interview.

158 Appendix C. Chapter 3 Study Replication Materials

Turn on audio recorder as part of Quicktime
Interview

• What is your programming background?

• Have you ever been in any group software design sessions, such as during a
class project or during an internship? IF YES

– What sort of notes do you take during group meetings?

• What kinds of notes did you take and what did you take those notes with?

• While doing programming tasks, what notes do you take, if any?

• What kinds of notes would you consider these?

• Do you ever revisit your notes? If so, when/why?

• Do you ever share your notes? If so, when/why?

• Do you prepare the notes for sharing in any way?

• Assuming they have talked about taking notes while programming When tak-
ing notes in the past, did you ever encounter any issues with your workflow?

• Do you have any examples of notes you’ve taken?

Ok, thank you.
For the task, you will be using an off-the-shelf note-taking application called Hy-

pothesis which allows you to highlight and annotate text and images on any website.
switch to chrome window with hypothesis The task will involve you attempting to
complete a data processing pipeline using Apache Beam. You will have access to
some starter code, Apache Beam’s documentation, and any other online web re-
source.

During this time, I would like you to try and write down as many notes as pos-
sible, even if this is not something you would normally do during a development
task. Try and take notes that you imagine would be useful to yourself in the future
or to another developer who is learning Beam. An example of a note may be an
inconsistency you found in the documentation or a note highlighting a particularly
useful Stack Overflow question or answer. Since we are using an off-the-shelf tool,
I would also love for any of your thoughts on how to make an annotation tool like
this more useful for development tasks.

Word Count Description
For this task, you will be writing a program using Apache Beam that will, given

a text-based input, count how many times each word appears in the inputted doc-
ument, remove any word that appears more than 5 times, and output a random
selection of 10 words and their respective counts. The handling of the input, out-
put, and running the pipeline has already been written - your portion of the task

C.1. Preliminary Study Materials 159

will be coming up with the PTransforms to use and their respective order within the
pipeline. We have also supplied some functions and classes in the script that may be
helpful. The code you need to fill in is at line 102 in the provided script.

You will have 45 minutes for this task. Do you have any questions? Answer
questions Okay, you may begin. Switch to PyCharm, have Chrome open with Beam
documentation

Post Phase 1 Debrief

• What role did note-taking play during this task for you?

• Do you imagine these notes being useful to you in the future?

• Do you imagine these notes being useful to other developers learning Beam?

• What can you imagine being done to your notes in order to make them more
helpful to yourself or other developers?

• Can you envision any changes to Hypothesis that would make note-taking
easier and more beneficial for yourself during a development task?

Phase 2 Script

Hello, my name is Amber Horvath. We are interested in understanding the role of
note taking during API learning tasks and how developers’ notes may benefit other
developers. This study is composed of three parts - the first part will be a short
interview about your background and current note-taking habits, if you have any
habits at all, the second part will be an API learning task which will have you taking
notes about what you learn about the API, and the third part will be another API
learning task where you will have access to other developers’ notes. The second and
third tasks will be done in the Python programming language using Apache Beam,
a relatively new distributed data processing API.

For this task, I will have you use Hypothesis, an off-the-shelf annotation tool, as
you complete an API learning task. You will be familiarizing yourself with Apache
Beam, a distributed data processing API, to complete a data pipeline. You will have
access to some starter code, Apache Beam’s documentation, and any other online
web resource.

You will also have access to annotations created using Hypothesis that another
developer left that she found particularly helpful while learning Apache Beam. The
annotations the user left may be viewed in a panel on the right side of the webpage.
Each annotation that has been left has a tag - you may search for a particular tag by
typing “tag:” and then the tag name in the search bar on the top of the screen. When
reviewing these annotations, you can think of yourself as the second developer in
this group and so you should also try and annotate the documentation with things
that you have questions about, answers for, and other things you find particularly
helpful. These annotations can be set to be viewable to a whole group of users, but

160 Appendix C. Chapter 3 Study Replication Materials

they may also be set to be viewed only by yourself, so feel free to annotate things that
you feel would only be beneficial for yourself while also annotating things that may
help a multitude of developers. While completing this task, also think about any
potential modifications to a tool like Hypothesis that may make it more beneficial
for software learning and development tasks.

In addition, we would like you to think aloud as you are working on this task.
In particular, please try and ask aloud all of the questions you have about the API,
its learning materials, and anything else. If you find an answer, please try and speak
that aloud as well.

Word Count Description
For this task, you will be writing a program using Apache Beam that will, given

a text-based input, count how many times each word appears in the inputted doc-
ument, remove any word that appears more than 5 times, and output a random
selection of 10 words and their respective counts. The handling of the input, out-
put, and running the pipeline has already been written - your portion of the task
will be coming up with the PTransforms to use and their respective order within the
pipeline. We have also supplied some functions and classes in the script that may
be helpful. The code you need to fill in is at line 102 in the provided script. You will
have 45 minutes for this task. Do you have any questions? Answer questions

Okay, you may begin. Switch to PyCharm, have Chrome open with Beam docu-
mentation

Post Phase 2 Debrief

• What did you think of the annotations that were present in the documentation?

• Were any particularly helpful? Unhelpful? Distracting? Insightful? Inaccu-
rate?

• How did you navigate the documentation with these annotations present?

• Do you think the presence of annotations made the documentation more or
less useful to you?

• Did you add any annotations yourself? IF YES

– What role did note-taking play during this task for you?

– Do you imagine these notes being useful to you in the future?

– Do you imagine these notes being useful to other developers learning
Beam?

– What can you imagine being done to your notes in order to make them
more helpful to yourself or other developers?

– Can you envision any changes to Hypothesis that would make note-taking
easier and more beneficial for yourself during a development task?

C.2. Lab Study Materials 161

C.1.2 Task Source Code

The source code that the participants had to modify as part of the task can be found
at: https://codesandbox.io/p/devbox/musing-lake-sphcmm. The Code Sandbox
must be configured with Apache Beam installed (run pip install apache-beam)
and running on Python 2.7 to work.

C.2 Lab Study Materials

C.2.1 Adamite Authoring Condition Protocol

Hello, my name is Amber Horvath. We are interested in understanding how devel-
opers may learn a new API better while using documentation.

Research Study Overview

We are investigating the act of creating and reading annotations when using doc-
umentation. You can think of annotations like Google Doc comments or Microsoft
Word Comments, in that they are generally a meta-level note attached to a particu-
lar place in a document. Like comments in Google Doc, sometimes the annotations
would be just for you, and other times they are to be shared with others.

This study is composed of 2 parts - the first part will be a tutorial to get you famil-
iarized with Adamite, our annotation tool. The second part will be a documentation
comprehension task using our experimental tool. For the documentation compre-
hension task, you will use the JavaScript programming language with Piling.Js, a
library for aggregating and organizing visualizations. Once you’ve finished the sec-
ond task, I will have you complete a short survey about your background and your
experience using the tool.

Consent

Before we begin, I’d like to review this consent form. Show consent form Please
open the link I just sent in the Zoom chat. Please enter your email at the top of
the form. Let me know if you have any questions. When you are ready, there are
two optional permissions you must either agree or disagree to at the bottom of the
document. **wait Please let me know if you agree to me recording this session so I
may start the recording or not. You must also consent to the study by typing in your
name and date. Please let me know once you’ve submitted the form. **wait You
will also receive an email with your response to the form. **if recording I will begin
recording this session.

Part 1: Tutorial

For the task, you will be using Adamite, our experimental annotation tool, which
allows you to highlight and annotate text on any website. Here’s a link to download

https://codesandbox.io/p/devbox/musing-lake-sphcmm

162 Appendix C. Chapter 3 Study Replication Materials

Adamite: [link to Adamite]. Let me know once you’ve downloaded and unzipped
the file named study-build.zip. **wait Would you mind sharing your screen?

Installation
*wait for participant to finish unzipping Adamite To install Adamite, go to “chrome://extensions”

or click “Manage Extensions” on the puzzle icon. **if developer mode isn’t enabled
Toggle the “Developer Mode” button at the top right of the screen - when developer
mode is enabled, the toggle should be blue and shifted to the right and you should
see some options at the top of the screen. There, click the “load unpacked” button
and select the unzipped folder, titled “build”. You should now see Adamite in your
list of extensions. **check if pinned - if not pinned by default Click the puzzle icon
next to your URL bar (with the left mouse button) and pin Adamite by clicking the
pin icon - it may already be automatically pinned, if so, the pin icon will be filled
in. Sign Up Now, navigate to a new tab and open the link I just sent in the Zoom
Chat (https://atomiks.github.io/tippyjs/v6/all-props/) You can press the Adamite
badge by the Chrome URL bar to open the Adamite sidebar. You can resize the side-
bar by placing your cursor between the end of the sidebar and the beginning of the
webpage. Now, please create an account by using the email “a[#]@test.com” and
the password “12345678” and hitting the “sign up” button. *wait for participant to
create account

Adamite Extension Overview
Adamite’s sidebar is the home for all of the annotations related to this page. The

top part of the sidebar displays your username in the top right corner. Below that,
there is a search bar for searching for annotations, a groups menu for showing your
groups and the annotations shared between you and your group members, and a
filter menu for filtering annotations, which we will discuss later.

Anchor Concept Overview - External vs On-Page
The main portion of the sidebar is the area below that, which is where any an-

notations on the page or that you have pinned will be displayed. Currently, there is
one public annotation visible with an anchor, the selected text which has been an-
notated, that leads to an external website, the popper.js documentation, shown by
the tilted anchor icon and a URL below the anchor text, and an anchor on this page
with the text that says “All Props”, shown with the upright anchor icon. Clicking on
the external anchor icon that leads to popper’s documentation will open that page
in another tab. Clicking on the anchor icon that is on this page next to the text “All
Props” will scroll to that part of the page.

Motivations for Using Annotations
Tippy and the main task’s documentation, piling, are both single-page documen-

tation sites but Adamite can also be used to connect multiple documentation pages
with external anchors, as shown in this example. Annotations can serve as useful
additional information about parts of the documentation, questions you or other de-
velopers had about the documentation, connections between related web pages as
shown in the popper example, personal to-do items just for you, and more.

chrome://extensions
https://atomiks.github.io/tippyjs/v6/all-props/

C.2. Lab Study Materials 163

Introduction to Tutorial
Now, we will begin the tutorial to learn more about Adamite. In this tutorial,

we will go through an exercise where you, a web developer, are using Tippy, a
tooltip-creation package for React, to create tooltips in your React project while using
Adamite. Note that you do not need to know React or Tippy for this tutorial.

Normal Annotation Task - Creating
As a developer learning Tippy, you decide to annotate the parts of the documen-

tation that seem relevant to your task of adding a tooltip to a button that is on your
webpage. You begin by annotating the code in the black box that is the call to tippy()
as this code example shows how to create a Tippy object. To annotate, highlight the
text on the webpage you want to annotate, in this case all the code in the black box.
**wait for participant to highlight A pop-up should appear showing the different
types of annotations you can create. These different types of annotations have dif-
ferent features for better managing your information needs and can also serve as a
way of organizing the annotations you create. Whenever you have the sidebar open
and select text, this pop-up will appear. Since we are making a general purpose
annotation, click the “normal” type button. **wait for participant to click

Normal Annotation Task - Editing - Tags, Public/Private
Now, in the sidebar, you should see the start of your new annotation. The top

part shows the text you selected while the rich text editor shows where you can add
some additional information. In the editor, add the text “This is how I create my
Tippy object”. **wait You can also add tags to your annotation such that you can
organize annotations that are related to one another and filter to only show annota-
tions that have the same tag. Add the tag “code” in the “Add a tag” field and press
enter. **wait Normally, you could choose whether to publish this annotation pri-
vately, to a group of other Adamite users, similar to Google Drive, or publicly, such
that anyone with Adamite can see the annotation, but for the purposes of this study,
all annotations will be published privately. Now, click the “post as private” button.
**wait The new annotation will appear in the sidebar. The text that was annotated
will also be highlighted on the webpage.

Overview of Viewing Annotations on Sidebar
When you confirm the creation of the annotation, it will be collapsed, meaning it

only shows the anchor, which is the text you annotated, and the text you added as
an annotation. In this collapsed view, you get a quick summary of the annotation’s
content. For an expanded view of the annotation that includes more information
such as the tags on the annotation, you can expand the annotation by clicking the
down arrow at the bottom of the annotation. Click the expand button. **wait for
them to click

Pinning Annotations
Let’s say you, a developer learning Tippy, decide that you want to be able to

access this annotation no matter what web page you’re on, as you are creating your
tippy object and learning what you can do with it. You can pin an annotation such

164 Appendix C. Chapter 3 Study Replication Materials

that it’s always accessible in a “pinned annotation” list, which can help with keeping
track of important annotations. Try pinning your annotation by clicking the pin icon.
**wait You should now see a button above the annotations that says “Show 1 Pinned
Annotation”. All of your pinned annotations, no matter what web page they are
on or what filters you have in place, will be accessible in that list. Now, unpin this
annotation by clicking the pin icon again.

Editing Annotations
Once you’ve created an annotation, you can also easily change it. You can edit

an annotation’s content and tags by clicking the pencil icon to start editing when the
annotation is expanded. Suppose you want to add more text to this annotation, to
remind you that you need to add props to your constructor - edit your annotation
by adding the text “I need to pass in props” and click “Post as private” to confirm
the edit. **wait

Creating TODO Annotation
Suppose you want your tippy object to have an animation when it appears.

There’s a prop called “inertia” - search for it on the page - if you find it in the bulleted
list, click on it to get to the inertia section showing the code example with the black
example code. **wait You see that, in order to add this animation, you need to not
only pass in the prop “inertia” with a value set to true, but you also need to specify
a CSS animation to play using the tippy-box class and the data-inertia attribute, as
shown in the second black code example box. Highlight from where code example
text says “inertia: true” through the CSS example underneath. **wait

Since you want to replicate this behavior on your website, create a to-do anno-
tation to keep track of this code that says “Add this to my code” and click “post
as private”. **wait To-dos are automatically pinned so that they’re always accessi-
ble and you do not lose track of what you are trying to do. Once you complete your
task, you can unpin the annotation or mark the annotation as done with the “Done?”
button to archive the annotation.

Creating Issue Annotation
In the CSS code example, you may notice that the animation is a cubic-bezier

function. Move your mouse to hover over the box that says “animation: scale” be-
low the code example. Notice that the CSS function is a scaling effect, not a bouncing
effect. This makes it difficult to actually adapt this code example as they do not pro-
vide an example of how to use cubic-bezier but they also don’t show the exact code
for how they made the interactive example using the prop “animation: scale”. This
is a good chance to use the “issue” annotation to mark this example as confusing and
possibly incomplete to help future users of the documentation know that this infor-
mation is confusing. Highlight the text that says “cubic-bezier” and create an issue
annotation. Annotate this with “make this match the interactive example below”.
**wait

This annotation has a “Flag for Expert Review” button which, in future versions
of Adamite, will notify documentation writers of problems in the documentation.

C.2. Lab Study Materials 165

Creating Question Annotation
Now you want to define the appearing and disappearing behavior of the tooltip.

Search “hideOnClick” - there’s a prop for this. The prop’s description references
a trigger event, but it’s not clear whether “trigger” is another prop, or something
to reference in the hideOnClick event handler. This is a good time to use a question
annotation to keep track of this confusing part of the documentation. Add a question
annotation asking “how do I use this” on the word “trigger” in the description above
the code example. Note that clicking “how do I use this” in the question drop down
menu will auto-populate the annotation content with the text “how do I use this”.
Create the annotation. **wait Notice that this new question annotation is pinned.
Question annotations are pinned such that you can keep track of this question and,
if you find an answer, you can link that page and its answer back to this page.

Answering Question Annotation
To answer our question, we search “trigger” on this page and see it shows up

many times - click until you get to the trigger section showing the trigger exam-
ple code. We can now answer our question by replying to the annotation with the
answer and an anchor to the point that answered our question. Note that you can
reply to any annotation, not just question annotations. Expand the question annota-
tion. Click the arrow button left of the pin icon or the button that says “Unanswered
Question” to open the reply editor. You can add an anchor to this reply by selecting
the text that answered your question - in this case, the header for the “trigger” sec-
tion - and clicking the “anchor plus” button at the bottom of the reply editor. **wait
You can write in “trigger is a prop we pass in” as the reply and click “post answer”.
**wait The annotation will now update with the answer. You can now scroll between
the part of the page that had your question and the content which has your answer
by clicking on the anchor icons left of the annotated text. **wait for them to click

Multiple Anchoring
We can build upon our question through adding more anchors. You want to

create an event handler that is triggered when the tooltip appears. Search for “on-
Trigger” and go to the onTrigger section of the documentation. **wait onTrigger has
a code example showing how to create an event handler that will fire when the tippy
tooltip is triggered. You can add this as an additional anchor to your annotation. Se-
lect the whole onTrigger code example and click the “anchor plus” button next to
the pin icon. **wait This functionality is useful for connecting multiple parts of the
documentation for better navigability and other web pages that are relevant to what
you are working on or confused about while programming.

Highlight Annotations
When there’s information you think may be useful or interesting but you don’t

want to add any text to, you can use the “highlight” annotation. For tippy, it may
be useful to remember that the API has a way of dealing with mobile devices using
the prop “touch”. The prop “touch” is right above the “trigger” section - scroll to
the “trigger” section by clicking your question annotation’s answer that is anchored

166 Appendix C. Chapter 3 Study Replication Materials

to the text that says “trigger”. Add a highlight annotation on the header that says
“touch”. **wait

Filtering Annotations
At some point, you may feel there are a lot of annotations with only a subset

being relevant to what you’re doing. One way of managing many annotations is
through filtering. You can filter your set of viewable annotations by clicking on
the various dropdowns by the text that says “Filters”. There’s a filter to only look
at recently made annotations, a filter for the various annotation types, the sorting
function we used earlier, and filtering by tags, which you can do by clicking on a
tag on an annotation or through clicking on the button that says “Select Tag”. Try
setting a filter such that only to-do annotations are viewable. **wait for them to filter
Okay, now change the filter back such that all annotation types are viewable.

Part 2: Task

For the task, you will be familiarizing yourself with Piling, an image aggregation and
organization library for JavaScript, and the Piling documentation. Imagine you are a
developer in a small group that is learning about Piling. You are the first developer
to begin using Piling, so you need to learn how to complete your programming task,
but you also want to save everyone time by adding annotations that answer the
questions you had and use annotations to mark and connect the important parts of
the documentation. Assume that anything you are confused or wondering about,
your teammates might be as well. Adamite does have a feature for small groups to
share annotations motivated by this scenario, but, for the purposes of this study, you
will be creating only private annotations.

During the study, you can start with Piling’s reference documentation which is
at the link in the Zoom chat: https://piling.js.org/docs/. This documentation is
far from perfect, so, during the study, I’d like you to annotate all of the questions
you have and any answers you find to your questions. I’d also like you to annotate
and connect parts of the documentation you feel are related, issues you find in the
documentation, and parts of the documentation you want to follow up on. Feel free
to annotate both things that you feel would only be beneficial for yourself and things
that may help other developers who are trying to learn Piling.

For the programming task, you will be writing a program using Piling that will,
given a set of inputted images, load them onto the screen, have images appear on
the same row given their subject matter, and have images of the same subject matter
have matching borders along the bottom of the image. All animal images should be
on one row and all art images are on another row and have different colored bottom
borders. Note that this effect should not be achieved through simply changing the
order of elements in piling’s data array.

The instructions along with a photo showing the expected output are also pro-
vided in the Code Sandbox project, which I am sending in the Zoom chat now: **wait
for them to open Have you used Code Sandbox before? **if no In Code Sandbox, the

https://piling.js.org/docs/

C.2. Lab Study Materials 167

left pane shows your code and the right pane shows the output web page. Every
time you save your code, your web page preview will update. You can also open
that web page in a new tab by clicking the rightmost button after the URL bar. There
is also a console that can be opened by clicking the button that says “console” below
the web page preview.

The Code Sandbox comes with piling already installed. We have provided a
starting script that lists the steps you must complete. Every time you save the script,
the outputted web page will refresh. There is also an HTML file and CSS file you may
reference, along with a picture that shows the expected outcome. Please have Code-
Sandbox.io open in one tab and Adamite and the documentation open in another
tab and continually share this window during the study. Remember that, while you
should try your best to complete the programming task, we are primarily interested
in the annotations you create while using Adamite.

In addition to annotating your thoughts about the documentation, we would
like you to think aloud as you are working on this task, so I can understand what
you are trying to do. In particular, please try and ask aloud all of the questions
you have about the Piling library and its documentation, any issues you find in the
documentation, parts of the documentation you find useful and want to follow up
on, along with your thought process as you try and complete the task. If you begin to
forget to annotate or stop thinking aloud, I will continually remind you to annotate
and think aloud.

You will have 45 minutes for the task. Do you have any questions? **wait Okay,
you may begin. **begin screen recording

Once task is over Times up! Please save your code and send me the URL of your
CodeSandbox.io project in the Zoom chat. **wait I will now have you fill out the
survey I sent in the Zoom chat (see Section C.2.4) - your Adamite username is a[tell
participant number here]. Please let me know once you’ve finished the survey.

Once they say they’ve completed the survey The study is now over. If you would
like to uninstall the tool, go back to the page chrome://extensions and find the
Adamite extension. From there, you may click the button that says “remove”.

If you would like to keep Adamite, please be aware that we will still be collecting
your user data. If, after 2 months from now, you still have the extension installed, we
will notify you that your data is still being collected and will provide instructions on
how to remove the application. This will continue until we begin to end this project.
If you are still using the application as we begin ending this project, we will notify
you 6 weeks in advance of the project ending such that you may prepare to remove
the application. We plan to keep Adamite running for at least the next year. When
we do plan to end the project, we will send your annotations in the form of a Google
Sheet.

We will send your compensation to your email in the form of an Amazon gift
card. Thank you for your time!

chrome://extensions

168 Appendix C. Chapter 3 Study Replication Materials

C.2.2 Adamite Using Condition Protocol

Hello, my name is Amber Horvath. We are interested in understanding how devel-
opers may learn a new API better while using documentation.

Research Study Overview

We are investigating the act of creating and reading annotations when using doc-
umentation. You can think of annotations like Google Doc comments or Microsoft
Word comments, in that they are generally a meta-level note attached to a particu-
lar place in a document. Like comments in Google Doc, sometimes the annotations
would be just for you, and other times they are to be shared with others.

This study is composed of 2 parts - the first part will be a tutorial to get you famil-
iarized with Adamite, our annotation tool. The second part will be a documentation
comprehension task using our experimental tool. For the documentation compre-
hension task, you will use the JavaScript programming language with Piling.Js, a
library for aggregating and organizing visualizations. Once you’ve finished the sec-
ond task, I will have you complete a short survey about your background and your
experience using the tool.

Consent

Before we begin, I’d like to review this consent form. Please open the link I just sent
in the Zoom chat. Please enter your email at the top of the form. Let me know if you
have any questions. When you are ready, there are two optional permissions you
must either agree or disagree to at the bottom of the document. **wait Please let me
know if you agree to me recording this session so I may start the recording or not.
You must also consent to the study by typing in your name and date. Please let me
know once you’ve submitted the form. **wait You will also receive an email with
your response to the form. **if recording I will begin recording this session.

Part 1: Tutorial

For the task, you will be using Adamite, our experimental annotation tool, which
allows you to highlight and annotate text on any website. Here’s a link to download
Adamite: [link to Adamite]. Let me know once you’ve downloaded and unzipped
the file named study-build.zip. **wait Would you mind sharing your screen?

Installation
**wait for participant to finish unzipping Adamite To install Adamite, go to

“chrome://extensions”. (or they can click “manage extensions” on the puzzle icon)
Toggle the “Developer Mode” button at the top right of the screen - when developer
mode is enabled, the toggle should be blue and shifted to the right and you should
see some options at the top of the screen. There, click the “load unpacked” button
and select the unzipped folder, titled “build”. You should now see Adamite in your

chrome://extensions

C.2. Lab Study Materials 169

list of extensions. **check if pinned - if not pinned by default Click the puzzle icon
next to your URL bar with the left mouse button and pin Adamite by clicking the
pin icon - it may already be automatically pinned, if so, the pin icon will be filled in.

Sign In
Now, navigate to a new tab and open the link I just sent in the Zoom Chat

(https://atomiks.github.io/tippyjs/v6/all-props/). You can press the Adamite badge
by the Chrome URL bar to open the Adamite sidebar.

You can resize the sidebar by placing your cursor between the end of the sidebar
and the beginning of the webpage. Now, please create an account using the email
“r[#]@test.com” and the password “12345678” and hit the “sign up” button. *wait
for participant to sign up

Adamite Extension Overview
Adamite ’s sidebar is the home for all of the annotations related to this page. The

top part of the sidebar displays your username in the top right corner. Below that,
there is a search bar for searching for annotations, a groups menu for showing your
groups and the annotations shared between you and your group members, and a
filter menu for filtering annotations.

Anchor Concept Overview - External vs On-Page
The main portion of the sidebar is the area below that, which is where any anno-

tations on the page or that you have pinned will be displayed.
Motivations for Using Annotations
Currently, there are 5 public annotations visible in the sidebar. The first annota-

tion that says “Tippy uses popper” has an anchor, the selected text which has been
annotated, that leads to an external website, the popper.js documentation, shown
by the tilted anchor icon and a URL below the anchor text. Its second anchor is on
this page with the text “All Props”, shown by the upright anchor icon. Clicking on
the external anchor icon leads to popper’s documentation and will open that page
in another tab. Clicking on the anchor icon that is on this page next to the text “All
Props” will scroll to that part of the page. If you hover over the text “All props”,
this will highlight that annotation’s anchor in light blue. In the case where you have
many annotations and the annotation that corresponds to the anchor is not visible,
the annotation will be scrolled to in the sidebar.

Introduction to Tutorial
Now, we will begin the tutorial to learn more about Adamite. In this tutorial,

we will go through an exercise where you, a web developer, are using Tippy, a
tooltip-creation package for React, to create tooltips in your React project while us-
ing Adamite. Tippy and the main task’s documentation, piling, are both single-page
documentation sites but Adamite can also be used to connect multiple documenta-
tion pages with external anchors, as shown in this example.

Annotations can serve as useful additional information about parts of the doc-
umentation, questions you or other developers had about the documentation, con-
nections between related web pages, personal to-do items just for you, and more.

https://atomiks.github.io/tippyjs/v6/all-props/

170 Appendix C. Chapter 3 Study Replication Materials

One of your teammates has left you some notes they took when they were learning
Tippy so we want to leverage their knowledge so that we can learn Tippy quicker.
Note that you do not need to know React or Tippy for this tutorial.

Understanding Annotations
We can begin the tutorial by looking at the annotations our teammate left us.

Each annotation is collapsed by default, meaning it only shows the anchor and the
text that was added as an annotation. In this collapsed view, you get a quick sum-
mary of the annotation’s content. For an expanded view of the annotation that in-
cludes more information such as when the annotation was created, you can expand
the annotation by clicking the down arrow at the bottom of the annotation. Click the
expand button on the “Tippy uses Popper!” annotation. **wait for them to click

Understanding Annotations - Replying
Now that the annotation is expanded, we can see the name of the author of the

annotation, in this case “tippy-dev”, the group the annotation was shared with, in
this case the “Public” group which includes everyone that uses Adamite, and the
time at which the annotation was posted. To the right of the user name, we can
see three buttons for interacting with the annotation. The leftmost arrow icon is
the reply button which allows us to reply to an annotation. This may be useful for
adding a follow-up question to an annotation, thanking the author for pointing out
some helpful information, or for answering the author’s question. Click the arrow
icon to open the reply editor. **wait for them to click

In the reply editor, we can add some text in the rich text editor for our reply
content. We can optionally add tags such that you can organize annotations that are
related to one another and filter to only show annotations that have the same tag.
You can also add an anchor to your reply to connect different parts of the documen-
tation together and for adding additional context to your reply by selecting some
text on the page and clicking the anchor plus button that is to the left of the cancel
button. Once you’re satisfied with your reply, you can click the Post Reply button
or, if you decided the reply was not necessary, you can click the cancel button to exit
out of the reply editor. Click the cancel button. **wait for them to click

Understanding Annotations - Pinning
The icon to the right of the reply icon is the pin icon. Pinning annotations causes

the annotation to appear in a pinned annotation list, which is accessible on any web-
page, and the annotation will ignore any filters in place. This is useful when you
have an important piece of information you want to keep track of and potentially
follow up on. Question type and to-do type annotations will be pinned by default
when you create them. Let’s say you, a developer, think the popper documentation
is interesting and want to keep track of your teammate’s annotation that references
it. Try pinning the “Tippy uses Popper” annotation. **wait You should now see a
button above the annotations that says “Show 1 Pinned Annotation”. Any annota-
tions you pin will be in that list. Now, unpin this annotation by clicking the pin icon
again. **wait

C.2. Lab Study Materials 171

Understanding Annotations - Multiple Anchoring
We can build upon annotations by adding more anchors. Look at the second

annotation in the list that has two anchors. Click on the first anchor to scroll to the
part of the page the annotation is on. **wait In this example, the two anchors serve
to explain the user’s question by showing that the default value for the delay prop
is 0, but the 4th code example usage shows that the hide delay value is null instead
of 0. This functionality is useful for connecting multiple parts of the documentation
for better navigability and for adding additional context to your annotation. If you
find an annotation that you think would benefit from an additional anchor, you can
highlight part of the webpage and click the anchor plus button at the top of the
expanded annotation, next to the pin icon.

Understanding Annotations - Different Types of Annotations
Now that we know what we can do with annotations, let’s look at the annotations

our teammate left us. In the sidebar, there are 5 annotations viewable. The first
annotation in the list is a normal type annotation, which can be used for sharing
additional information about the anchored text, and is denoted by the badge in the
top right corner of the annotation with the 4 squares.

The second annotation in the list is an unanswered question annotation, shown
by the bright blue question mark badge in the top right corner of the annotation.
Question annotations are useful for keeping track of confusing parts of the docu-
mentation such that, if we find an answer to our question, we could help future
users of the documentation and potentially connect the text or webpage that had
our answer to our original question. If we knew the answer to our teammate’s ques-
tion, we could reply to this annotation with an answer.

The next annotation in the list shows an answered question annotation - our
teammate didn’t know how to use the “trigger” prop in Tippy, but, upon searching,
found some example code showing how to use trigger and linked that answer to
their original question through adding an anchor to the code example. This answer
is then automatically appended by Adamite to the original question annotation’s
content. Answered question annotations are shown with a dark gray question mark
badge in the top right corner.

Below that annotation, there is an issue annotation, which is useful for marking
problematic parts of the documentation to help future users of the documentation
know that this information is confusing and notify the documentation writers that
there may be a problem in the text. In this case, the code example is incomplete and
doesn’t match the interactive example below the anchored text. This annotation has
a “Flag for Expert Review” button which, in future versions of Adamite, will notify
documentation writers of problems in the documentation.

Lastly, there’s a highlight annotation that is used to highlight a part of the web-
page without adding any additional text - these annotations are useful for marking
important or potentially useful parts of the documentation for better navigability of

172 Appendix C. Chapter 3 Study Replication Materials

the document. These different types of annotations have different features for bet-
ter managing your information needs and can also serve as a way of organizing the
annotations you create or read.

Normal Annotation Task - Creating
Let’s say you want to add more annotations to this webpage. As a developer

learning Tippy, you want to annotate the parts of the documentation that seem rele-
vant to your task of adding a tooltip to a button that is on your webpage. You begin
by annotating the code in the black box that is the call to tippy() as this code example
shows how to create a Tippy object. To annotate, highlight the text on the webpage
you want to annotate, in this case all the code in the black box. **wait for participant
to highlight

A pop-up should appear showing the different types of annotations you can cre-
ate. Whenever you have the sidebar open and select text, this pop-up will appear.
Since we are making a general purpose annotation, click the “normal” type button.
**wait for participant to click

Normal Annotation Task - Editing - Tags, Public/Private
Now, in the sidebar, you should see the start of your new annotation. The top

part shows the text you selected while the rich text editor shows where you can add
some additional information. In the editor, add the text “This is how I create my
Tippy object”. **wait You can also add tags to your annotation such that you can
organize annotations that are related to one another and filter to only show annota-
tions that have the same tag. Add the tag “code” in the “Add a tag” field and press
enter. **wait Normally, you could choose whether to publish this annotation pri-
vately, to a group of other Adamite users, similar to Google Drive, or publicly, such
that anyone with Adamite can see the annotation, but for the purposes of this study,
all annotations will be published privately. Now, click the “post as private” button.
**wait The new annotation will appear in the sidebar. The text that was annotated
will also be highlighted on the web page.

Filtering Annotations
At some point, you may feel your teammate left a lot of annotations with only a

subset being relevant to what you’re doing. One way of managing many annotations
is through filtering. You can filter your set of viewable annotations by clicking on the
various drop downs by the text that says “Filters” at the top of the sidebar. There’s
a filter to only look at recently made annotations, a filter for the various annotation
types, a sorting function to sort annotation either by their location on the page or
by when they were created, and filtering by tags, which you can do by clicking on
a tag on an annotation or through clicking on the button that says “Select Tag”. Try
clicking on the “code question” tag to filter by that tag. **wait for them to filter
Only the two question annotations that were marked with that tag will be viewable.
Now change the filter back such that all annotations are viewable by clicking on the
x button to the right of the tag name “code question” in the filter menu. **wait for
them to reset filter

C.2. Lab Study Materials 173

Searching for Annotations
Another way of managing many annotations is through searching to find the

annotation you think will have the information you need. For searching, there are
3 modes - globally, meaning across all annotations made using Adamite, on this
specific webpage, or on this website, meaning, in this case, any annotations made
on atomiks.github.io, the Tippy documentation website. Let’s try searching for our
teammate’s popper annotation - type the text “Popper” in the search bar. **wait You
will see a preview of the annotation including the type of annotation, the anchor
text, and the annotation text and it highlights what part of the annotation matched
the search. Click on that annotation in the list. **wait Now that annotation will be
the only annotation in the sidebar. You can also replace the sidebar’s contents with
all of the annotations that match your query by clicking the “enter” key after making
a search. Clear your search result by clicking the x button in the search bar. **wait

Great, that’s it for the introduction tutorial. We will now move on to the main
task. If at any point during the task you forget how to use any of Adamite ’s features,
feel free to ask me during the task.

Part 2: Task

For the task, you will be familiarizing yourself with Piling, an image aggregation
and organization library for JavaScript, and the Piling documentation. I want you
to imagine that you are a developer in a small group that is learning about Piling.
One of your teammates has been learning Piling and has left some annotations that
helped them while working on the task, questions they had while learning Piling,
issues they found in the documentation, and more. You want to leverage the notes
that they took while trying to complete your programming task and learning Piling
yourself, while optionally adding annotations. When you encounter an annotation
that is useful to you, I’d like you to speak aloud that the annotation is useful and
why the annotation was helpful. Conversely, if an annotation is not helpful to you,
I’d like you to speak aloud that the annotation was not helpful and explain why it
was not helpful.

During the study, you can start with Piling’s reference documentation which is
at the link in the Zoom chat https://piling.js.org/docs/. This documentation is far
from perfect, so, during the study, I’d like you to use the annotations that are present
in the documentation. In addition to using the annotations in the documentation, I
would like you to think aloud as you are working on this task, so I can understand
what you are trying to do. In particular, please try and ask aloud all of the questions
you have about the Piling library and its documentation, any issues you find in the
documentation, parts of the documentation and annotations you find useful, along
with your thought process as you try and complete the task. If you begin to forget
to stop thinking aloud, I will continually remind you to think aloud.

For the programming task, you will be writing a program using Piling that will,
given a set of inputted images, load them onto the screen, have images appear on

atomiks.github.io
https://piling.js.org/docs/

174 Appendix C. Chapter 3 Study Replication Materials

the same row given their subject matter, and have images of the same subject matter
have matching borders along the bottom of the image. All animal images should be
on one row and all art images are on another row and have different colored bottom
borders. Note that this effect should not be achieved through simply changing the
order of elements in piling’s data array. The instructions along with a photo showing
the expected output are also provided in the Code Sandbox project, which I am
sending in the Zoom chat now.

**wait for them to open Have you used Code Sandbox before? **if no In Code
Sandbox, the left pane shows your code and the right pane shows the output web-
page. Every time you save your code, your webpage preview will update. You
can also open that webpage in a new tab by clicking the rightmost button after the
URL bar. There is also a console that can be opened by clicking the button that says
“console” below the webpage preview.

The Code Sandbox comes with piling already installed. We have provided a
starting script that lists the steps you must complete. There is also an HTML file and
CSS file you may reference, along with a picture that shows the expected outcome.
Please have CodeSandbox.io open in one tab and Adamite and the documentation
open in another tab and continually share this window during the study. Remem-
ber that, while you should try your best to complete the programming task, we are
primarily interested in how you use the annotations in the documentation.

You will have 45 minutes for the task. Do you have any questions? **wait Okay,
you may begin. **begin screen recording

Once task is over Times up! Please save your code and send me the URL of your
CodeSandbox.io project in the Zoom chat. **wait I will now have you fill out the
survey I sent in the Zoom chat (see Section C.2.4) - your Adamite username is r[tell
participant number here]. Please let me know once you’ve finished the survey.

Once they say they’ve completed the survey The study is now over. If you would
like to uninstall the tool, go back to the page chrome://extensions and find the
Adamite extension. From there, you may click the button that says “remove”.

If you would like to keep Adamite, please be aware that we will still be collecting
your user data. If, after 2 months from now, you still have the extension installed, we
will notify you that your data is still being collected and will provide instructions on
how to remove the application. This will continue until we begin to end this project.
If you are still using the application as we begin ending this project, we will notify
you 6 weeks in advance of the project ending such that you may prepare to remove
the application. We plan to keep Adamite running for at least the next year. When
we do plan to end the project, we will send your annotations in the form of a Google
Sheet.

We will send your compensation to your email in the form of an Amazon gift
card. Thank you for your time!

chrome://extensions

C.2. Lab Study Materials 175

C.2.3 Control Condition Protocol

Hello, my name is Amber Horvath. We are interested in understanding how devel-
opers may learn a new API better while using documentation.

Research Study Overview

This study is composed of 2 parts - the first part will be a tutorial to get you famil-
iarized with speaking aloud when using documentation. The second part will be
a documentation comprehension task. For the documentation comprehension task,
you will use the JavaScript programming language with Piling.Js, a library for ag-
gregating and organizing visualizations. Once you’ve finished the second task, I
will have you complete a short survey about your background and your experience
doing the task.

Consent

Before we begin, I’d like to review this consent form. Please open the link I just sent
in the Zoom chat. Please enter your email at the top of the form. Let me know if you
have any questions. When you are ready, there are two optional permissions you
must either agree or disagree to at the bottom of the document. **wait Please let me
know if you agree to me recording this session so I may start the recording or not.
You must also consent to the study by typing in your name and date. Please let me
know once you’ve submitted the form. **wait You will also receive an email with
your response to the form. **if recording I will begin recording this session.

Part 1: Tutorial

Framing
In this tutorial, we will be practicing thinking aloud as a way of training for

the main task. Since we are primarily interested in your thought process while
learning an unfamiliar API and how you use its documentation while trying to
complete a task, I want you to practice speaking aloud all the questions you have
about the documentation, the connections you see between different parts of the
documentation that are relevant to your task, problems with the documentation,
and other important information you learn about the API and its documentation.
In this tutorial, we will go through an exercise where you, a web developer, are
using Tippy, a tooltip-creation package for React, to create tooltips in your React
project. Open the link I sent you in the Zoom chat in a new tab and share your
screen: https://atomiks.github.io/tippyjs/v6/all-props/.

You, as a new developer learning Tippy, are reading through this documentation
to gain an understanding of Tippy. Note that you do not need to know React or
Tippy for this tutorial.

Recognizing Useful Parts of the Documentation

https://atomiks.github.io/tippyjs/v6/all-props/

176 Appendix C. Chapter 3 Study Replication Materials

As a developer learning Tippy, you begin by learning how to create a Tippy ob-
ject. At the top of the screen there is a code example in the black box that is a call
to tippy() showing how to create a tippy object - the first step to adding a tooltip to
your webpage. Since this is a necessary piece of information to complete your goal
of adding tooltips to your React project, I’d like you to practice speaking aloud that
this part of the documentation is useful. **wait for participant to speak aloud Great.

Asking Questions
Now that you know how to create a tippy object, you want to define the appear-

ing and disappearing behavior of your Tippy tooltip. Try speaking this goal aloud.
**wait Now, search “hideOnClick” - there’s a prop for this. The prop’s description
references a trigger event, but it’s not clear whether “trigger” is another prop, or
something to reference in the hideOnClick event handler. Try speaking aloud this
question you have about how to use “trigger”. **wait

Answering Questions
Since we want to understand how to use trigger, search for “trigger” on this

page. **wait “Trigger” shows up many times - click until you get to the trigger
section showing the trigger example code. We can now answer our question by
seeing that the trigger referenced in the hideOnClick prop is another prop we need
to pass in to our call to tippy. Try speaking this answer aloud. **wait

Recognizing Connected Parts of the Documentation and Speaking Aloud What to Do
Our original goal was to define the appearing and disappearing behavior of our

Tippy tooltip. Since we answered our question of how trigger works, we are closer
to that goal, but we still need to add an event handler that gets called when the
tippy tooltip is triggered. Search for “onTrigger” and go to the onTrigger section of
the documentation. **wait onTrigger has a code example showing how to create an
event handler that will fire when the tippy is triggered. Since this event handler is
relevant to your goal, I’d like you to practice speaking aloud that this part of the
documentation is related to your goal and to the other components we’ve looked at.
**wait

Recognizing Issues in the Documentation
Now you want your tippy tooltip to bounce when it is triggered. There’s a prop

called “inertia” that makes the tooltip bounce - search for “inertia” on the page.
**wait In the CSS code example, you may notice that the animation is a cubic-bezier
function. Move your mouse to hover over the box that says “animation: “scale”.
Notice that the CSS function is a scaling effect, not a bouncing effect. This makes it
difficult to actually adapt this code example as they do not provide an example of
how to use cubic-bezier but they also don’t show the exact code for how they made
the interactive example using the prop “animation: scale”. This is an issue in the
documentation - I’d like you to practice speaking aloud that you identified an issue
in the documentation. **wait

C.2. Lab Study Materials 177

Part 2: Task

For the task, you will be familiarizing yourself with Piling, an image aggregation
and organization library for JavaScript, and the Piling documentation. Imagine you
are a developer in a small group that is learning about Piling. You are the first de-
veloper to begin using Piling, so you need to learn how to complete your program-
ming task, but you also want to save everyone time by sharing what you learned
to your teammates. Assume that anything you are confused or wondering about,
your teammates might be as well. During the task, I’d like you to do whatever you
would naturally do to make sure you are able to share what you learned with your
teammates, whether that be taking notes, leaving comments in the code, or some
other mechanism.

During the study, you can start with Piling’s reference documentation which is
at the link in the Zoom chat https://piling.js.org/docs/. This documentation is far
from perfect, so, during the study, I’d like you to speak aloud all of the questions
you have about Piling and its documentation and any answers you find to your
questions. I’d also like you to speak aloud the parts of the documentation you feel
are related in completing your task. Feel free to speak aloud both things that you
feel would only be beneficial for yourself and things that may help other developers
who are trying to learn Piling. If you begin to stop thinking aloud, I will continually
remind you to think aloud.

For the programming task, you will be writing a program using Piling that will,
given a set of inputted images, load them onto the screen, have images appear on
the same row given their subject matter, and have images of the same subject matter
have matching borders along the bottom of the image. All animal images are on
one row and all art images are on another row and have different colored bottom
borders. Note that this effect should not be achieved through simply changing the
order of elements in piling’s data array.

The instructions along with a photo showing the expected output are provided in
the Code Sandbox project, which I am sending in the Zoom chat now **wait for them
to open Have you used Code Sandbox before? **if no In Code Sandbox, the left pane
shows your code and the right pane shows the output webpage. Everytime you save
your code, your webpage preview will update. You can also open that webpage in
a new tab by clicking the rightmost button after the URL bar. There is also a console
that can be opened by clicking the button that says “console” below the webpage
preview.

The Code Sandbox comes with piling already installed. We have provided a
starting script that lists the steps you must complete. There is also an HTML file
and CSS file you may reference, along with a picture that shows the expected out-
come. Please have CodeSandbox.io open in one tab, and the documentation open
in another tab. Remember that, while you should try your best to complete the pro-
gramming task, we are primarily interested in your thought process as you complete
the task.

https://piling.js.org/docs/

178 Appendix C. Chapter 3 Study Replication Materials

You will have 45 minutes for the task. Do you have any questions? **wait Okay,
you may begin. **begin screen recording

Once task is over
Times up! Please save your code and send me the URL of your CodeSandbox.io

project in the Zoom chat. **wait I will now have you fill out the survey I sent in the
Zoom chat (see Section F.2) - your participant number is c[tell participant number
here]. Please let me know once you’ve finished the survey. Once they say they’ve
completed the survey The study is now over. We will send your compensation to
your email in the form of an Amazon gift card. Thank you for your time!

C.2.4 Post-Task Survey

Please fill out the following scale questions about your thoughts on the usability
and usefulness of Adamite. The following page will have some additional ques-
tions about your background. The last page will ask about your experience using
Adamite.

1. What is your Adamite username? [required, free response]

2. For the following 7 statements, rate how much you agree or disagree with the
provided statement. [required, each statement is scored on a 7-point Likert
from “Strongly Disagree” to “Strongly Agree”.]

• I consider Adamite easy to use and easy to achieve what I want

• I consider my interactions with Adamite to be understandable and clear

• I consider it easy for me to learn how to use Adamite

• I would consider Adamite useful for my daily work

• I enjoyed the features provided by Adamite

• If possible, I would like to have the tool available for my professional or
personal use

• If possible, I would recommend Adamite to my friends and colleagues
doing programming work

Background Questions

Please answer these questions about your programming background.1

1. Are you familiar using comments in tools such as Google Docs, Microsoft
Word, or Overleaf? [required, yes/no/other]

2. What notes do you take, if any, when programming? [required, free response]

1For the control condition, their survey solely comprised this section, along with a question asking
what their participant number was.

C.2. Lab Study Materials 179

3. What notes do you take, if any, when doing tasks that are not programming?
[required, free response]

4. What is your profession? (e.g., student, software engineer, manager, etc.) [re-
quired, free response]

5. How many years have you been programming? [required, free response]

6. How many years of professional programming experience do you have? [re-
quired, free response]

7. What is your level of expertise in using JavaScript? [required, 7-point scale
from “No experience” to “Expert”]

Short Answer Questions

Please write a free response to each question about your experience with Adamite,
the annotation tool you used, and your note taking habits.

1. What did you think about the tool, Adamite, in general? [free response]

2. In what situations do you think you would most want an annotation tool like
Adamite? [free response]

3. Are there any features of Adamite that you found particularly good? [free re-
sponse]

4. Are there any features of Adamite that you found particularly confusing? [free
response]

5. What new features would you want in an annotation tool? [free response]

6. How do you normally keep track of important information? [free response]

7. Have there been any situations where taking notes or keeping track of infor-
mation using other strategies have not worked well? If so, please describe.
[free response]

C.2.5 Task Source Code

A completed version of the source code that the participants had to modify can
be found at: https://codesandbox.io/p/sandbox/piling-project-script-9rwug. The
version participants would see at the beginning of their session is the exact same,
except index.js would only have the code comments and not the actual filled-in
JavaScript code.

https://codesandbox.io/p/sandbox/piling-project-script-9rwug

181

Appendix D

Chapter 4 Study Replication
Materials

The following contents are the lab study materials for Chapter 4’s lab study. Parts of
the protocol which are instructions, notes or are otherwise not said aloud are high-
lighted in yellow.

D.1 Catseye Condition Protocol

Hello, my name is Amber Horvath and I am a fourth-year Ph.D. student in the
Human-Computer Interaction Institute at Carnegie Mellon University, working un-
der Dr. Brad Myers. Research on developers has shown that they often need to keep
track of lots of information. We are interested in understanding more about this need
while completing a programming task.

To support developers’ information needs, we are investigating the act of cre-
ating and reading annotations when programming. You can think of annotations
like Google Doc comments or Microsoft Word Comments, in that they are generally
a meta-level note attached to a particular place in a document. Like comments in
Google Doc, sometimes the annotations are just for you, and other times they are to
be shared with others.

This study is composed of 2 parts - the first part will be a tutorial to get you
familiarized with Catseye, our annotation tool. The second part will be a program-
ming task using our experimental tool. For the programming task, you will use the
JavaScript programming language and the Visual Studio Code editor augmented
with the Catseye plugin. Once you’ve finished the second task, I will have you com-
plete a short survey about your background and your experience using the tool and
completing the study.

D.1.1 Consent

Before we begin, I’d like to review this consent form. Please open the link I just sent
in the Zoom chat. Please enter your email at the top of the form. Let me know if you
have any questions. When you are ready, there are two optional permissions you
must either agree or disagree to at the bottom of the document. **wait Please let me

182 Appendix D. Chapter 4 Study Replication Materials

know if you agree to me recording this session so I may start the recording or not.
You must also consent to the study by typing in your name and date. Please let me
know once you’ve submitted the form. **wait You will also receive an email with
your response to the form.

**if recording I will begin recording this session.

D.1.2 Part 1: Tutorial

For the task, you will be using Catseye, our experimental annotation tool, which
allows you to annotate your code in the Visual Studio Code editor. Before we can
use the Visual Studio Code extension, we need to create an Catseye account. Would
you mind sharing your screen? **wait for screen share

Create a Catseye Account

Do you already have a Catseye account? **if no To create a Catseye account, go to
https://adamite.netlify.app/login. Then, choose “Login with Google”. Once you
have logged in, you should be redirected to the Catseye website and logged in to
your new Catseye account. **wait for them to login Now, click your profile icon
and click the “Link GitHub” option from the dropdown. This should open a pop-up
where you can sign in and authorize your GitHub account to be used with Catseye.1

**if yes We will need to connect your Catseye account to your GitHub account. In
order to do that, log in to your Catseye account at adamite.netlify.app/login. Then,
once you are logged in, click your profile icon in the top right corner of the screen,
and click “Link to GitHub”. This should open a pop-up that will prompt you to log
into your GitHub account, if it is not already logged in.

Now, please download the Catseye Visual Studio Code extension. Here’s a link
to download Catseye: [link]. Let me know once you’ve downloaded the file named
Catseye.vsix. **wait

Installation

**wait for participant to finish downloading Catseye To install Catseye, first open
Visual Studio Code.

Open the extensions pane - you can do this by either using the keyboard short-
cuts ctrl/cmd + shift + x or by clicking the Extensions button on the left side
panel.

Click the three-dot menu in the top right corner of the Extensions side panel.
Then, click the “Install from VSIX” menu option - this should open a file explorer
window. From there, find and select the Catseye.vsix file we just downloaded and
click “Install”. This installation may take a while. . . **wait While we are waiting, we
can clone the repository we will use for the tutorial task. Do you know how to clone

1Note that this whole log-in flow and installation was greatly simplified after this study.

https://adamite.netlify.app/login

D.1. Catseye Condition Protocol 183

a Git project? **if yes Okay, great, please create a clone of this project and open it in
Visual Studio Code https://github.com/ShauryaBhandari/Website-Templates

**if not Okay, copy this GitHub link: https://github.com/ShauryaBhandari/Website-
Templates. Then, in Visual Studio Code on the Get Started page, click the “Clone Git
Repository” link. This should open a text input window at the top of the screen.
Paste the link that you just copied into that window and click “Enter”. Then select
the location you want this folder to be in - for the purposes of this study, it does not
matter where you clone the repository and you can delete this folder once we are
done with the study. Once you clone the repository, VS Code should have a pop-up
that says “Would you like to open the cloned repository?” in the bottom right corner
of the screen - click “Open”.

**once Catseye has finished installing - should prompt for GitHub auth Okay,
it looks like it’s done. Let’s first check that Catseye is in our extensions list - in
the Extensions side panel, it should appear in the “Installed” list. **if there Okay,
now the extension should prompt you to authenticate the app with your GitHub
account.**if not there Okay, let’s quit and restart Visual Studio Code and then the
extension should ask to authenticate with GitHub.

Once GitHub opens in a browser tab, sign in to your account or, if already signed
in, follow the instructions for signing in to GitHub with VS Code These steps should
end with you re-launching VS Code. Note that this is a one-time requirement - next
time you launch VS Code, you will be logged in and will stay logged in. **wait
Congratulations, you got Catseye installed!

Open Catseye

Let’s open the project we cloned - open the Website-Templates folder in VS Code.
**wait Now that we have a project open, we can use Catseye. In this tutorial, we
will go through an exercise where you, a web developer, are using this repository of
website templates as a starting point for writing some code for your own website.

To open the Catseye pane, you can right-click inside the editor and click the
“Catseye: Launch Catseye” item - you can also open Catseye by using the keyboard
shortcut ctrl/cmd + shift + a. Catseye should open in a separate pane alongside
your code. If you want to move Catseye, you can drag the Catseye tab to the right
or left until you see a light gray shadow showing where the pane will go. **wait

Making our First Annotation

With Catseye open, we can create our first annotation. Let’s open the index.html

file in the bizland folder **wait To make an annotation, select the code you want to
annotate – in this case, let’s annotate line 20 where the HTML says “title BizLand
Theme close title”. **wait for participant to highlight this line Next, right click the
selected code - in the context menu, you should see 3 Catseye annotating options:
“Catseye: create annotation”, “Catseye: create highlight”, and “Catseye: created

https://github.com/ShauryaBhandari/Website-Templates
https://github.com/ShauryaBhandari/Website-Templates
https://github.com/ShauryaBhandari/Website-Templates

184 Appendix D. Chapter 4 Study Replication Materials

pinned annotation”, along with the “Catseye: Launch Catseye” option. Note that
there are also keyboard shortcuts to execute these commands - (if Windows) ctrl +
alt + a to create an annotation (if Mac) option + cmd + a, ctrl/cmd + alt + h to make a
highlight annotation, and ctrl/cmd + alt + p to create a pinned highlight annotation.
You can always find these keyboard shortcuts in the context menu when you have
some code selected or in the list of keyboard shortcuts which can be found in the File
menu, in case you forget. Let’s make an annotation - either click “Catseye: create
annotation” from the context menu, or use the ctrl + alt + a keyboard shortcut to
make an annotation. **wait

Now, in the Catseye pane, you should see the start of your new annotation. The
top part shows the code you selected, while the text editor shows where you can
add your own thoughts, questions, commentary or other additional information to
this code.

Something that may make sense to keep track of through annotations is open
tasks you want to work on – in this case, we want to adapt this code to make our
own website, so let’s annotate that. In the text box, add the text “change this to
a better title”. When creating our annotation, we also have the choice to post the
annotation to our collaborators or just for ourselves - for the purposes of this study,
we will be posting every annotation privately. We can also choose whether or not to
pin an annotation when creating it - for now, we will not pin this annotation but will
discuss pinning in more depth later. Now, click “Post as Private” **wait. The new
annotation will appear in the Catseye pane and the annotated code will have a light
gray box around it in the editor. Annotation locations in the code can also be seen in
light green in the scroll bar area.

Annotations in the Editor

Catseye annotations can be used to keep track of old versions of the code and to see
your thoughts about the code in-context. Let’s hover over the light gray box on line
20. **wait You should see the content of your annotation, in this case “Change this
to a better title”, along with a link to scroll to your annotation. Clicking on the link
will scroll to the annotation in the Catseye pane and highlight it - try clicking on the
link now. **wait Suppose you actually do change the title of the page - try changing
the code from <title>Bizland Theme</title> to <title>My New Website</title>

then save your code. **wait and see if Catseye pane updates - if it doesn’t prompt
them to click the pane to bring in to focus. The Catseye pane should update with the
new version of your code whenever you save your code, so make sure to save often!
If you want to see the original code you annotated, click the right arrow to the right
of the code - the original version of your code will always be saved. **wait You can
then go back to the most recent version of the code by clicking the left arrow. **wait
Catseye ’s annotations can be useful for keeping track of your thoughts in-context
about the code, and will retain that original context if you change your code.

D.1. Catseye Condition Protocol 185

Keeping Track of Open Questions and Hypotheses

Another use for annotations is to help you keep track of open questions and hy-
potheses about the code. Now, in the bizland index.html file, let’s scroll down to
line 316. There, you should see a comment that says “Import JQuery before mate-
rialize.js” – the original author of this code does not explain why this is necessary
or what problems may arise if you do not import jquery before materialize.js. Since
we are hoping to adapt this code to our own needs and may want to import other
libraries and need to change the order of the imports, let’s mark this part of the code
as confusing with an annotation. Select the comment on line 316 **wait and create
an annotation asking “why do the imports need to be in this order?” **wait Annota-
tions are a lightweight way of keeping track of these open questions you may have
about unfamiliar code without making comments in the source code that will need
to be removed later.

One potential reason for this ordering is that materialize.js may depend on jquery
in order to work and since we aren’t using npm or another package management
system to control our dependencies, we need to do this checking manually. Add
a reply to your annotation saying “materialize may depend on jquery” - you can
make a reply by clicking on the speech bubble button. **wait Replies are a quick and
easy way to follow up on the content of your annotation. You can see your reply by
clicking on the “Show 1 reply” button. **wait

Now, let’s see what happens if we change the order of the imports - move line
321, the line with src set to ‘js/materialize.min.js’, up to line 317, before the jquery
import. **wait Now save, and open index.html in your browser. **wait Once you
have index.html open, look at the console message by right-clicking the browser
window and selecting “Inspect” or by clicking F12. **wait Notice that, in the console,
there’s an error message saying that $ is not defined and this error is being thrown
by materialize.min.js. This confirms our hypothesis that materialize depends upon
JQuery - let’s edit our annotation to reflect this fact - press the pencil icon in the top
right corner of the annotation, and add the text “confirmed - materialize depends on
jquery”. **wait Now, let’s move the code back into the right order - put the materi-
alize.min.js script load below line 327. **wait Annotations can be an effective way to
keep track of your open questions and your eventual answers to those questions.

Keeping Track of What You Have Learned

Annotations can also be an effective way to keep track of many different kinds of
things you learn about the code, but might not want to or be allowed to add as
regular comments. Let’s scroll to the bottom of the file - lines 352 and 353. **wait
There, we can see some latitude and longitude coordinates, but it is not immediately
clear where those coordinates are pointing to. Let’s try putting those coordinates into
Google - copy the coordinates on line 353 and paste them into Google. **wait Now
we can see that these coordinates are in the Boston city area. Let’s annotate those

186 Appendix D. Chapter 4 Study Replication Materials

coordinates and say “these coordinates point to the Boston area - we can change
them if we want our marker to be elsewhere”. **wait Good. If you are learning lots
of things in an unfamiliar code base, it may be helpful to create annotations to keep
track of these thoughts.

Lightweight Versioning and Capturing System Output

Catseye’s annotations can also be used as a space to keep track of changing system
output. Let’s take a look at another website project - open the file called main.js in
the Edgeledger folder, under js. **wait We can see the author is using JQuery to do
some things with scroll, but what if we wanted to change the behavior of scrolling?
Let’s add an annotation to line 30 on the comment “//Smooth Scrolling” that says
“How does this work?” **wait Good.

First, let’s see what “hash” is - add a console log below line 35 that prints the
value of hash. This will also give us insight into when this function is called. Open
index.html in your browser and open your console. **wait If we click any of the but-
tons on the nav bar at the top of the screen, we should see that the console prints out
the ID name we are scrolling to. Let’s copy and paste this output **wait then go back
to our annotation and paste the output as a reply to our annotation. **wait Good.
Annotation replies are a nice place to add additional information to our annotation,
including output values.

If we want to associate specific output with a specific version of our code, it may
make sense to save a version of our code then edit the snapshot with the output that
version of the code generated. If we look at line 39, we can see that an “animate”
function is being called and the value “scrollTop” is being set to some number related
to the top of the hash element we investigated before. If we go back to the website
and click the nav bar buttons, we can see that the element scrolls but it isn’t very
nicely centered on the screen and is too high on the screen – let’s try fixing this.
Create an annotation where scrollTop is set that says “improve this”. **wait Good.

To fix this, let’s try some different values in place of the “100” they are using.
Let’s start with replacing 100 with 500. Let’s also add a console log with the value
that we are computing – copy the code that scrollTop is being set to into a console
log statement above the animate call. **wait Now, save and reload and try clicking
one of the buttons. 500 seems to make the element too low on the screen - copy the
number we computed and go back to VS Code. **wait Now, snapshot your code and
edit the snapshot with your copied number – add the text “too low on the screen”.
**wait Good. Let’s try changing to something in the middle - change 500 to 250.
**wait Now save and go back to the website – this looks better. Copy and paste the
output into a new snapshot of the final version of the code. **wait Great - snapshots
can be a good place to keep track of which version of your code produces what
output.

D.1. Catseye Condition Protocol 187

Further Building Upon and Contextualizing an Annotation

Once we have an annotation, there are multiple ways to build upon it to help you
better keep track of your thoughts about the code. One way is to add an additional
anchor to an annotation - this may be useful if you find yourself continually going
back and forth between locations in the code base, whether that be across files or
within one file, or if you want to better contextualize your annotation comment, in
the case that it is relevant in multiple places in the code base.

An annotation we made earlier about coordinate locations for Google Maps is
relevant in this file too – if we scroll to line 4, you can see that they set some latitude
and longitude coordinates. Let’s add this as an anchor to our previous annotation.
We can find our other annotations in the “Current Project” section of the Catseye
pane – find your latitude and longitude annotation in that section. **wait Now se-
lect lines 4 through 7, then click the “anchor” button in the top right corner of the
annotation. **wait You should see your annotation update with another anchor be-
low the original latitude and longitude coordinates. Multiple anchors is one way of
creating links between related code in different parts of the code base.

Since this anchor is rather long, it can take up a lot of the Catseye pane - let’s
make it smaller by clicking the up arrow directly to the right of the filepath **wait
- this will truncate the code to only show the first line – even in the collapsed state,
you can still navigate to the code by clicking the code or file path in the annotation.
You can expand the code by clicking the down arrow to the right of the file path.
If the annotation is still taking up too much space in the Catseye pane, you can
collapse all of the anchors, such that you can only see the first one – try clicking the
up arrow that is below both of the anchors. **wait Now you should only see the first
code snippet – like when shrinking a single anchor, you can expand the list again by
clicking the down arrow.

Navigating Using Annotations

Annotations not only serve as a way of externalizing your thoughts without modi-
fying the source code, but also can serve as prominent navigational aids and quick
links to parts of the code you care about.

Annotations in the Catseye pane are sorted by their location in the file system -
note that your annotation is in a section called “Current File”. Once you create more
annotations across more files, they will either be in the current file, current project,
or pinned. Once you use Catseye in multiple projects, you will see your annotations
in those projects.

You can navigate to an annotation’s location by clicking the code in the annota-
tion or the filepath. Try clicking your annotation’s code that says “scrollTop”. **wait
Since you already have this file open, Catseye scrolls the open-editor to the location
of the code. Now, try clicking the code latitude and longitude coordinates from the
bizland index.html file. **wait This opens the bizland index.html file. Note that your

188 Appendix D. Chapter 4 Study Replication Materials

scrollTop annotation is now in the Current Project list, as opposed to the Current File
list. If you begin having many annotations in your project, you can hide the anno-
tations in the Current Project list, or any other Catseye pane list, by clicking on the
text that says “Current Project” - try closing the list. **wait Now open it again by
clicking the Current Project text again. **wait

If you find yourself continually going to the same part of the code and want an
even quicker way to navigate there, it may make sense to create a pinned annotation
at that location. You can pin an annotation you’ve already created by clicking the
“pin” icon at the top right of the annotation - let’s pin our latitude and longitude an-
notation. **wait Good. You can also create a pinned annotation using the keyboard
shortcut ctrl + alt + p or by clicking the “pin annotation” checkbox when creating a
new annotation.

Your pinned annotations are in the pinned annotation list and are always acces-
sible there, no matter what project you are working on or what file you have open.
With a pinned annotation, you can quickly jump to its location by using the key-
board shortcut ctrl + alt +]. **wait Since this annotation has multiple anchors, using
the navigation shortcut will jump between the two anchors in this annotation - try
clicking ctrl + alt + right square bracket again. **wait If you have a set of related
code snippets you want to easily navigate between, creating a pinned annotation
with multiple anchors is an effective way of doing this.

When we have multiple pinned annotations, we can navigate between the an-
chors in each pinned annotation. Let’s try pinning the first annotation we made -
the My New Website annotation. **wait Now, try navigating between the two anno-
tations using the ctrl + alt + right square bracket keyboard shortcut. **wait Good.

“Finishing” an Annotation

Once you’re done with an annotation - whether that means you no longer need its
content, or you are no longer working on that task anymore, you can delete an anno-
tation by clicking the trash can icon. Try deleting your first annotation about chang-
ing the website title. **wait Note that the highlight is also removed from the editor.
Deleting annotations can help with managing an overabundance of annotations.

In the case where you do have many annotations, you can search to find your
annotations – search looks at the annotation content, the code, and the filename,
so you can, for example, find all of your annotations made on CSS files or find all
the annotations you annotated with the word “todo”. Try searching for “scrollTop”.
**wait Good.

That is it for the tutorial. Do you have any questions about Catseye? **wait Okay,
let’s move on to the main task.

D.1. Catseye Condition Protocol 189

D.1.3 Part 2: Task

Now, for the main task, you are going to be using Catseye to help you keep track
of your thoughts, questions, comments, and concerns about some unfamiliar code,
along with any issues or areas for improvement you find in the code.

I would like you to imagine that you are a new team member on a programming
project and you have been tasked with understanding the code, along with finding
and fixing bugs in the code. You do not want to edit your teammates’ code until you
have tested it – thus, for the first 15 minutes of the study, you are not allowed to edit
the actual logic of the code, but may annotate the code with what you learn about
the code through testing, what bugs you find, areas that can be improved, and any
other pieces of information you want to keep track of. You can also run the code,
use Google, add print statements and comments, or do anything else you would
normally do when testing code, aside from actually editing the code that is already
in the repository.

After the 15 minutes, you will have 30 minutes to use your annotations to help
you improve upon and debug the code. While you are working on this task, I would
also like you to think aloud about what you are doing, how you plan on chang-
ing the code, and please speak aloud whenever you discover a bug and whenever
you believe you’ve addressed the bug. I will notify you once your first 15 minutes
of reviewing and testing the code are complete, and when your last 30 minutes of
debugging are complete.

Do you have any questions? **wait
Now, I’d like you to create your own local fork of this repository. https://github.com/horvathaa/task-

repo. To do that, click the “fork” button at the top right corner of the screen. Once
you’ve created the fork, create a local clone of the fork. Note that you must start
with the mock-cr branch - you can change to that branch with the git command: git
checkout mock-cr. You can also find the instructions I explained in the file “mock-
cr-task.txt”. Now open the website in your browser by opening index.html. **wait
This is a website for playing classic arcade games, including Snake and Tetris. In case
you are unfamiliar with these games, the repository has a file called “game-rules.txt”
that explains how each game should function.

Are you ready to begin? **wait
Okay, I’m starting the timer.

D.1.4 Part 3: After Task

Time’s up! Please save all of your files. At the top of the Catseye pane, to the right of
the search bar, there’s a sandwich menu - please click the sandwich menu, then click
“Save Annotations to JSON”. Once “output.json” has been created – you should see
it at the top level of the project – push your changes to GitHub. **wait

Now, please complete the Google Form that I’m sending in the Zoom chat (see
Section D.3 for survey). You can stop sharing your screen at this point. Please let

https://github.com/horvathaa/task-repo
https://github.com/horvathaa/task-repo

190 Appendix D. Chapter 4 Study Replication Materials

me know once you’ve completed the form. **wait Alright, with that, the study is
officially over.

You can delete the repositories I had you clone - WebsiteTemplates and task-
repo. You may uninstall Catseye by going to the Extensions pane in VS Code, finding
Catseye in your list of extensions, clicking the gear icon and then clicking “Uninstall”
from the dropdown menu.

If you would like to continue using Catseye, please be aware that we will still be
collecting your user data. If, after 2 months from now, you still have the extension
installed, we will notify you that your data is still being collected and will provide
instructions on how to remove the application. This will continue until we begin
to end this project. If you are still using the application as we begin ending this
project, we will notify you 6 weeks in advance of the project ending such that you
may prepare to remove the application. We plan to keep Catseye running for at least
the next year. When we do plan to end the project, we will send your annotations to
you in the form of a Google Sheet.

I will stop the recording now. Let me know what email you want the Amazon
gift card sent to. Do you have any final questions for me? **wait Thank you for your
time!

D.2 Control Condition Protocol

Hello, my name is Amber Horvath and I am a fourth-year Ph.D. student in the
Human-Computer Interaction Institute at Carnegie Mellon University, working un-
der Dr. Brad Myers. Research on developers has shown that they often need to keep
track of lots of information. We are interested in understanding more about this need
while completing a programming task.

This study is composed of 2 parts - the first part will be a tutorial to practice
keeping track of information while programming. The second part will be a pro-
gramming task. For the programming task, you will use the JavaScript program-
ming language and the Visual Studio Code editor. Once you’ve finished the second
task, I will have you complete a short survey about your background and your ex-
perience doing the task.

D.2.1 Consent

Before we begin, I’d like to review this consent form. Please open the link I just sent
in the Zoom chat. Please enter your email at the top of the form. Let me know if you
have any questions. When you are ready, there are two optional permissions you
must either agree or disagree to at the bottom of the document. **wait Please let me
know if you agree to me recording this session so I may start the recording or not.
You must also consent to the study by typing in your name and date. Please let me
know once you’ve submitted the form. **wait You will also receive an email with
your response to the form.

D.2. Control Condition Protocol 191

**if recording I will begin recording this session.

D.2.2 Part 1: Tutorial

In this tutorial, we are going to practice thinking aloud about and externalizing in-
formation you are keeping track of while programming. Prior research has identified
various situations in which people sometimes need to keep track of information, so
in this tutorial, we will go through a scenario where you can explain to me how you
would normally keep track of that kind of information. During this tutorial, I would
like you to keep track of information in whatever way you normally would when
working on a programming task. This could include creating comments in the code,
writing information down in a separate document, or keeping all of this information
in your head. I will also have you think-aloud.

In order for you to show me how you normally keep track of information while
programming, I am going to have you clone a GitHub project that we will walk
through together. Do you know how to clone a Git project? **if yes Okay, great,
please create a clone of this project and open it in Visual Studio Code https://github.com/ShauryaBhandari/Website-
Templates - once you have opened the folder, would you mind sharing your screen?

**if not Would you mind sharing your screen? Okay, copy this GitHub link:
In this tutorial, we will go through an exercise where you, a web developer, are

using this repository of website templates as a starting point for writing some code
for your own website. Let’s open the index.html file in the bizland folder **wait

Keeping Track of Open Tasks

One thing that developers must keep track of when programming is the open tasks
they are working on. These tasks may change over time as you, the developer, en-
counter bugs, or are assigned new tasks. Let’s say you want to adapt this code to
make your own website – I’d like to do whatever you would normally do to help
you keep track of an open task - what do you normally do for keeping track of
tasks? **wait Okay - throughout the main task, I would like you to do that each time
you are trying to keep track of an open task.

Throughout the study, I’d like you to think aloud whenever you are starting a
new task and think aloud about how you plan to actualize that task.

Keeping Track of Open Questions and Hypotheses

Another thing developers must keep track of, especially when dealing with unfa-
miliar code, is their open questions and hypotheses. Confusion surrounding code
can lead to introducing buggy code and poor implementation planning, which can
block developers from progressing on their work.

In the bizland index.html file, let’s scroll down to line 316. There, you should see
a comment that says “Import JQuery before materialize.js” – the original author of
this code does not explain why this is necessary or what problems may arise if you

https://github.com/ShauryaBhandari/Website-Templates
https://github.com/ShauryaBhandari/Website-Templates

192 Appendix D. Chapter 4 Study Replication Materials

do not import jquery before materialize.js. Since we are hoping to adapt this code to
our own needs and may want to import other libraries and need to change the order
of the imports, I would like you to do whatever you would normally do to help you
keep track of an open question or hypothesis - what do you normally do when you
have a question about some code? **wait Okay - throughout the main task, I would
like you to do that each time you have a question about the code.

One potential reason for this ordering is that materialize.js may depend on jquery
in order to work and since we aren’t using npm or another package management
system to control our dependencies, we need to do this checking manually. Let’s
test this hypothesis by seeing what happens if we change the order of the imports -
move line 321, the line with src set to ‘js/materialize.min.js’, up to line 317, before the
jquery import. **wait Now save, and open index.html in your browser. **wait Once
you have index.html open, look at the console message by right-clicking the browser
window and selecting “Inspect” or by clicking F12. **wait Notice that, in the console,
there’s an error message saying that $ is not defined and this error is being thrown
by materialize.min.js. This confirms our hypothesis that materialize depends upon
JQuery. I’d like you to practice thinking aloud that you found an answer to your
initial question. **wait Great. Throughout the study, I’d like you to think aloud and
do whatever you normally would when you have a question or hypothesis about
the behavior of the code, or find an answer to any of your questions.

Keeping Track of What You Have Learned

Programming requires a lot of experimentation and naturally results in you discov-
ering and learning things about the code. To explore this, let’s scroll to the bottom
of the file - lines 352 and 353. **wait There, we can see some latitude and longitude
coordinates, but it is not immediately clear where those coordinates are pointing to.
Let’s try putting those coordinates into Google - copy the coordinates on line 359
and paste this into Google. **wait Now we can see that these coordinates are in the
Boston city area. I’d like you to practice thinking aloud about how you learned that
the coordinates point to the Boston city area. **wait Good - please think aloud when
you learn things about the code or behavior of the program throughout the study. I
would also like you to do whatever you would normally do to help you keep track
of something you learned about the code - what do you normally do when you learn
something about some code? **wait Okay - throughout the main task, I would like
you to do that each time you learn something about the code.

Capturing System Output

If we scroll down a little further to line 373, there is a call to the Google Maps API
to create a new Google Maps object using the coordinates we just explored. **wait
Since we are new to the Google Maps API, we are curious what this object holds.

D.2. Control Condition Protocol 193

Now, to investigate this question, add a console log statement below line 376 that
prints the map object, such as console.log(map). **wait Now, let’s save and reload
index.html so we can see what is in the map object. If your console is not already
open, open the console. Now, find the console log you added that printed the map
object. **wait Let’s expand the map object and look at its properties. I’d like you to
practice thinking aloud about what you see **wait. Good - throughout the study, I
would like you to think aloud and note what you discover when looking at the pro-
gram output in whatever way you naturally would. If you notice things changing in
the output, what do you normally do when trying to keep track of changing system
output? **wait Okay, - throughout the main task, I would like you to do that each
time you are interested in keeping track of changing system output.

Lightweight Versioning

Sometimes developers make a series of small changes in order to test a value or to
try and debug some code – if these small edits do not work, the developer may need
to keep track of what they changed or revert to a prior version of the code. If we
look at line 374, we can see there’s a document.getElementById call. If we want to
change this code for our own purposes, we may want to change both this ID and the
corresponding ID in the HTML. Change the ID to “mywebsiteid” in the JavaScript
and the HTML **wait. Now, change the coordinates on line 353 to the latitude and
longitude coordinates of Pittsburgh - you can find those coordinates by going to
Google and searching “Pittsburgh coordinates”. **wait Now, I would like you to go
back to the prior version of the document.getElementById call and change the ID
in the HTML, as well. **wait Good. If you have to revert to a prior version of the
code but do not want to revert a whole file, what do you normally do? **wait Okay,
- throughout the main task, I would like you to do that each time you are interested
in reverting to a prior version for some part of the code.

Keeping Track of Patches of Code

When developers are working on fixing a bug or adding a feature, they often need
to update and change multiple parts of the code which may be spread across mul-
tiple files that they must keep track of. Open signup.html in the Cloudlia folder
and scroll to line 261 **wait - there is a JQuery event listener for adding carousel
functionality to a particular element on the page. Let’s say you wanted to add this
carousel functionality to your bizland index.html file in the Testimonials section -
how would you normally keep track of these two separate patches of code you are
interested in? **wait Okay, throughout the main task, I would like you to do that
each time you are interested in keeping track of and navigating between different
parts of the codebase.

194 Appendix D. Chapter 4 Study Replication Materials

D.2.3 Part 2: Task

For the main task, I would like you to imagine that you are a new team member on a
programming project and you have been tasked with understanding the code, along
with finding and fixing bugs in the code. You do not want to edit your teammates’
code until you have tested it – thus, for the first 15 minutes of the study, you are not
allowed to edit the code except to add comments and print statements in the files.
In other words, you are only allowed to make edits that do not affect the logic of
the code. However, you may not edit the files that have the word “LOCKED” in the
filename. You may also take notes on or think aloud about what you learn about the
code through testing, what bugs you find, areas that can be improved, and any other
pieces of information you want to keep track of in the same way you did during the
tutorial. After the 15 minutes, you will have 30 minutes to try to improve upon and
debug the code, given what you discovered in the first 15 minutes.

While you are working on this task, I would also like you to think aloud about
what you are doing, how you plan on changing the code, and please speak aloud
whenever you discover a bug and whenever you believe you’ve addressed a bug.
I will notify you once your first 15 minutes of reviewing and testing the code are
complete, and when your last 30 minutes of debugging are complete.

Now, I’d like you to create your own local fork of this repository.https://github.com/horvathaa/task-
repo. To do that, click the “fork” button at the top right corner of the screen. Once
you’ve created the fork, create a local clone of the fork. Note that you must start
with the mock-cr branch - you can change to that branch with this git command: git
checkout mock-cr. Now open the website in your browser by opening index.html.
**wait This is a website for playing classic arcade games, including Snake and Tetris.
In case you are unfamiliar with these games, the repository has a file called “game-
rules.txt” that explains how each game should function.

Do you have any questions? **wait Are you ready to begin? **wait
Okay, I’m starting the timer.

D.2.4 Part 3: After Task

Time’s up! Please save all of your files. At the top of the Catseye pane, to the right of
the search bar, there’s a sandwich menu - please click the sandwich menu, then click
“Save Annotations to JSON”. Once “output.json” has been created – you should see
it at the top level of the project – push your changes to GitHub. **wait

Now, please complete the Google Form that I’m sending in the Zoom chat (see
Section D.3 for survey). You can stop sharing your screen at this point. Please let
me know once you’ve completed the form. **wait Alright, with that, the study is
officially over.

You can delete the repositories I had you clone - WebsiteTemplates and task-repo.
I will stop the recording now. Let me know what email you want the Amazon gift

https://github.com/horvathaa/task-repo
https://github.com/horvathaa/task-repo

D.3. Post-Task Survey 195

card sent to. Do you have any final questions for me? **wait Thank you for your
time!

D.3 Post-Task Survey

D.3.1 Notes

The following survey was used in the Catseye and control conditions – generally,
in the Catseye condition, the words “Catseye” and “annotations” were used, while,
in the control condition, the questions about specifically Catseye and its usability
were omitted and questions about annotations were rephrased to be questions about
“notes/comments”. For brevity, I will include just the Catseye survey.

D.3.2 Survey

Please fill out the following scale questions about your thoughts on the usability
and usefulness of Catseye. The following pages will have some additional questions
about your background. The last page will ask about your experience using Catseye.

1. What is your GitHub username? [required, free response]

2. For the following 7 statements, rate how much you agree or disagree with the
provided statement. [required, each statement is scored on a 7-point Likert
from “Strongly Disagree” to “Strongly Agree”.]

• I consider Catseye easy to use and easy to achieve what I want

• I consider my interactions with Catseye to be understandable and clear

• I consider it easy for me to learn how to use Catseye

• I would consider Catseye useful for my daily work

• I enjoyed the features provided by Catseye

• If possible, I would like to have the tool available for my professional or
personal use

• If possible, I would recommend Catseye to my friends and colleagues
doing programming work

Background Questions

Please answer these questions about your programming background.

1. Are you familiar using comments in tools such as Google Docs, Microsoft
Word, or Overleaf? [required, yes/no/other]

2. What notes do you take, if any, when programming? [required, free response]

196 Appendix D. Chapter 4 Study Replication Materials

3. What notes do you take, if any, when doing tasks that are not programming?
[required, free response]

4. What is your profession? (e.g., student, software engineer, manager, etc.) [re-
quired, free response]

5. How many years have you been programming? [required, free response]

6. How many years of professional programming experience do you have? [re-
quired, free response]

7. What is your level of expertise in using JavaScript? [required, 7-point scale
from “No experience” to “Expert”]

Short Answer Questions

Please write a free response to each question about your experience with Catseye,
the annotation tool you used, and your note taking habits. Note that some of these
questions are required.

1. What did you think about the tool, Catseye, in general? [free response]

2. In what situations do you think you would most want an annotation tool like
Catseye? [free response]

3. Are there any features of Catseye that you found particularly good? [free re-
sponse]

4. Are there any features of Catseye that you found particularly confusing? [free
response]

5. What new features would you want in an annotation tool? [free response]

6. Are the annotations you created in today’s study similar to notes/comments
you create when programming for your own work? [required, yes/no/“some
are similar, some are dissimilar”]

7. If you answered “yes” for the last question, in what ways are the annotations
you created in today’s study similar to your normal comments/notes? If you
answered “no”, in what ways are the annotations different? If you answered
“some are similar, some are dissimilar”, what annotations from the study are
similar to your regular notes/comments and what ones are dissimilar? [free
response]

8. How similar was the code you encountered in today’s study to code you have
encountered during your time as a programmer? We define “similar” as code
that suffers from similar problems, such as poorly named variables and func-
tions, lack of documentation and lack of organization. [required, 1 to 5 scale
from “Not at all similar” to “Very similar”]

D.3. Post-Task Survey 197

9. If you answered that you have encountered code that is similar to the code in
today’s study, please elaborate on what qualities of the study code are similar
to what you have encountered in the past. [free response]

10. How frequently have you encountered code that is similar to the code in to-
day’s study? [required, 1 to 5 scale from “Never” to “Very frequently”]

11. Would you have wanted to delete the annotations you made during today’s
study? [required, yes/no/“I would want to delete some and keep some”/other]

12. How do you normally keep track of important information? [free response]

13. Have there been any situations where taking notes or keeping track of infor-
mation using other strategies has not worked well? If so, please describe. [free
response]

199

Appendix E

Chapter 6 Study Replication
Materials

The following sections are the study protocol for the Sodalite evaluation study and
the post-task survey. Parts of the protocol that were not spoken aloud are high-
lighted in yellow.

E.1 Sodalite Study Protocol

E.1.1 Introduction

Hi, my name is Amber Horvath and I am a 5th year PhD student at Carnegie Mellon
University in the Human-Computer Interaction Institute, advised under Dr. Brad
Myers. We are researching how developer documentation is authored and main-
tained and how this process may change when using an in-editor tool.

Research Study Overview

To investigate the documentation authoring and maintenance process, we devel-
oped a tool that allows you to create and maintain documentation for your code
while staying within the context of your source code.

The study will be composed of two parts. The first part will be a tutorial to fa-
miliarize you with our Visual Studio Code extension for authoring and maintaining
developer documentation called Sodalite. The second part will be an open-ended
session in which you will use our tool to create some documentation for your own
JavaScript or TypeScript code. You are free to document as much or as little of your
code as you would like using the tool, and can document whatever type of informa-
tion you feel is important. Upon completing your documentation, there is a 3rd part
of the study, in which we will assess the maintenance aspect of the tool by revert-
ing your code to an older version and seeing how well the documentation updates.
Lastly, I will have you complete a short survey about your background and your
experience using Sodalite.

200 Appendix E. Chapter 6 Study Replication Materials

Consent

Consent Before we begin, I’d like to review this consent form. send consent form
Please open the link I just sent in the Zoom chat. Please enter your email at the top
of the form. Let me know if you have any questions. When you are ready, there are
two optional permissions you must either agree or disagree to at the bottom of the
document. **wait Please let me know if you agree to me recording this session so I
may start the recording or not. You must also consent to the study by typing in your
name and date. Please let me know once you’ve submitted the form. **wait You will
also receive an email with your response to the form.

**if recording I will begin recording this session.

E.1.2 Tutorial

For the task, you will be using Sodalite, our experimental documentation tool, which
allows you to create and maintain your documentation in the Visual Studio Code
editor.

We will begin by downloading the VSIX file from this link – https://drive.google.com/file/d/1Rxun17LPiaqEEK80VqMK-
NM3uoGHAL6k/view?usp=sharelink – please right click on the file named “so-
dalite” and click “download”. It may take a moment. **wait

*wait for participant to finish downloading Sodalite To install Sodalite, first open
Visual Studio Code.

Open the extensions pane - you can do this by either using the keyboard short-
cuts ctrl/cmd + shift + x or by clicking the Extensions button on the left side
panel.

Click the three-dot menu in the top right corner of the Extensions side panel.
Then, click the “Install from VSIX” menu option - this should open a file explorer
window. From there, find and select the sodalite.vsix file we just downloaded and
click “Install”.

**once Sodalite has finished installing - should prompt for GitHub auth Okay, it
looks like it’s done. Let’s first check that Sodalite is in our extensions list - in the
Extensions side panel, it should appear in the “Installed” list. **if there Okay, now
the extension should prompt you to authenticate the app with your GitHub account.
**if not there Okay, let’s quit and restart Visual Studio Code and then the extension
should ask to authenticate with GitHub.

Start a Sodalite Story

I would like you to open the code base that you are planning on documenting. Note
that this codebase must be implemented in the JavaScript or TypeScript program-
ming languages. This is because the system is optimized for those languages. What
project are you planning on using for this study? **wait Okay. Please open the folder
in VS Code. Is this a public repository? **wait If so, may I have a link to the project?

https://drive.google.com/file/d/1Rxun17LPiaqEEK80VqMK-NM3uoGHAL6k/view?usp=share_link
https://drive.google.com/file/d/1Rxun17LPiaqEEK80VqMK-NM3uoGHAL6k/view?usp=share_link

E.1. Sodalite Study Protocol 201

I am only interested in this for assessing the size of the repository for analysis pur-
poses. **ifYes Okay, great, thank you – please send the link in the chat.

**ifNo That’s okay! Can you give me a rough estimate as to how large the project
is, such as how many files there are or lines of code? **wait Thanks.

Note that, depending on the size of your repository, Sodalite may take a little
longer to load as it is calculating relationships between different parts of the code-
base. Once it is done, you can open the Sodalite panel by using the keyboard short
CTRL/CMD + SHIFT + A. Try and open the panel. **wait Good. Now that it’s open,
you should see a button that says “Create New Story” – I’d like you to click that but-
ton. **wait You should now see the story editor. Note that, during this session, if you
could refrain from editing your code, that will help ensure that the code locations in
the story are kept accurate.

Authoring a Sodalite Story

To write a Sodalite story, you can start by selecting a template. Sodalite has certain
pre-defined templates to help you start off and structure your particular type of doc-
ument. Certain templates also have different qualities, meaning different templates
will favor different types of code references. For example, the Change Log template
will favor functions that have been edited during your most recent coding session.
You can also create your own code templates, but we will not be doing that in to-
day’s study. For this brief tutorial, try selecting the Overview template, which can
be used to create a high level walk through of your code. **wait Great.

Now that you’ve selected a template, you can begin writing your story. One of
the first things you can do is give your story a Title – try titling your story “Tutorial”.
**wait Good.

A core feature of Sodalite is being able to connect your code to your story, such
that your documentation can be more clear and complete. To create a connection,
try selecting some of the templated text in the story such as the word “describe” in
the Summary section. You can select whatever text you want. **wait Good. Sodalite
tries to leverage both the content in your story and the information in VS Code to
suggest code connections. Try now selecting anywhere in VS Code. **wait to see if
code recommendations show up – if not prompt to click elsewhere.

Notice that Sodalite now has a list of Suggestions on the left. These are different
entities within your code. They are collapsed by default – you can expand them by
clicking the down arrow. Try clicking the down arrow for the first item in the list
**wait good. Some of them, such as methods or classes, may also have additional
metadata, such as other locations in which they are referenced or places where they
are defined. If you click the name of the method, Sodalite will jump you to the
location in which that entity is defined. You can add a link to this definition by
clicking the “plus” button in the top right corner. Try clicking the plus button. **wait
Notice how the text that you had selected in the story changed to the color red. If
you click that red text, it will take you to the location of the corresponding code.

202 Appendix E. Chapter 6 Study Replication Materials

**once code reference updated Also notice how the Suggestions pane now has a
Code Reference list below it – these are the parts of your code that are currently
referenced within the code story.

**if there is Referenced in In the “Referenced at” section, you can click on the
name of different methods or classes in which this variable is referenced. Try clicking
on one of the names **wait notice that this takes you to the place in which the method
is referenced. If you’d like more information about the method that is referencing the
entity you are looking at, you can click the question-mark button by the plus button.
If you would like to add a code link to that particular place in which that reference
is made, such as in a case where you want to discuss how a particular function is
called, you can click the plus button by the question mark button.

Sometimes Sodalite is able to compute extra information about your code – you
can see that information by clicking on the three-dot button at the bottom of the code
reference box. Try clicking on the button.

**if nothing happens Sodalite was unable to find any additional information
about this code – during the course of the study, you can try clicking that button
to see additional information.

**if additional information Aside from just the call graph information, Sodalite
computes how often certain parts of code appear in Git commits together, as an addi-
tional way of showing connections between the parts of your code. These references
are sorted by most common to least common. In your case it appears that [**method
name] was in [**number commits] with [**original method name]. You can investi-
gate that method by clicking its name – Sodalite will take you to its definition. You
can also add a link to that method by clicking the plus button to the right of the
commit information.

In the case that you want to document a specific line or lines of code, you can
select a range of code and add that as a code link. Try selecting some code **wait
notice how the first item in the Suggestion list is now the code you selected. You
can then add that code to your story the same way you have before – by selecting
some text in the story. If you do not select text in the story and click the plus button,
Sodalite will just put the code content directly into your rich text editor. This works
alright with things like method names, but in the case of a whole line of code, it may
be too much.

Sodalite also functions as a rich text editor. This means it supports adding in
links, images, and formatting the text. Feel free to try adding in images or links
to make your documentation even better. Note, however, that some features are
less supported than others for the code links – copy-pasting a code link or undoing-
redoing a change which involves a code link may cause undefined behavior, so I
would not recommend doing those actions during the study. Deleting code links is
supported, but may also not work 100% perfectly, so I would also not advise doing
that unless totally necessary.

E.1. Sodalite Study Protocol 203

To exit the story creation editor, you can either click the “X” button in the top
right corner to discard the current story or click the green “Save” button below the
editor to save the story. Doing that will create a folder in your repository directory,
along with a JSON file in that folder that has information about your story. Make
sure to do this at the end of the study! However, in this case, let’s discard this tutorial
story by clicking the “X” button.

One final note before starting – given that Sodalite is experimental research soft-
ware, there is a chance that it may experience some bugs, particularly with the code
links. In the case that you experience problems with Sodalite, I would recommend
taking whatever you have written, copying it into a plain text editor, clicking the
“cancel” button in Sodalite, then re-open a new story in Sodalite and paste in your
content. Sorry in advance if this happens, but I would hate for you to lose all of your
work! I may also interject if I notice a problem in the way Sodalite is functioning.

Another important note is to not switch templates once you start writing as that
may result in you losing your text.

That is it for the tutorial, do you have any questions? **wait If, during the course
of the session, you forget how to do anything with Sodalite, please feel free to ask
me.

E.1.3 Study

We will now begin the main portion of the study. You will be using Sodalite to write
some documentation about your code. What you choose to document is completely
up to you. Subsequently, the session can go on for as long or short as you would
like. You will be compensated at $25 an hour, for up to 4 hours. Again, if you have
any questions about how Sodalite works, please feel free to ask.

Are you ready? **wait When you are complete, feel free to tell me. You may now
begin.

Anchor Check

You’re done? Alright, please upload the generated JSON file to this link. Let me
know once that is done.

**wait Alright, great. Can you now check out an earlier version of your code?
We are also assessing how well our algorithm performs at finding appropriate re-
attachment points, given the code links you included in your story. Please go to
your GitHub and find a version of your code that is older than 3 months and check
out that version of your code. **Wait Once you have checked out this code, please
create a “.sodalite” folder at the top of your project directory and put the copied
JSON file in there. **wait Once you have done that, please close then reopen Visual
Studio Code and then open Sodalite. **wait We will go through each link one at a
time, and I would like you to tell me what you think of any messages that Sodalite

204 Appendix E. Chapter 6 Study Replication Materials

provides and whether or not you think the place at which the code link is anchored
is appropriate or not. Please open Sodalite. **wait

**For each link – if marked as warning or invalid: Click the link. What do you
think of the message? **wait Now, do you think this re-attachment spot is valid?

End

The study is now over. I have a couple of questions to ask to get your feedback, and
then I will pay you. Here is the link to the Google Form (see Section E.2) – tell me
when you are done. You can stop sharing your screen now. **once completed Please
send me the JSON story that you created – you can do this by uploading it to this
Google Drive. Please let me know once it is uploaded. **wait

You are also free to uninstall Sodalite – you can do so by going to the Extensions
pane, finding Sodalite in the list, then clicking the three dot menu and clicking the
“Uninstall” option. You are also free to delete the .sodalite folder in your repository.

Okay, the study is now over. Send me the email you use for PayPal/Amazon,
and you will receive your compensation of [**dollars] in the next few days. Thank
you so much!

E.2 Post-Task Survey

Please fill out the following scale questions about your thoughts on the usability
and usefulness of Sodalite. The following page will have some additional questions
about your background. The last page will ask about your experience using Sodalite.

1. What is your GitHub username? [required, free response]

2. For the following 7 statements, rate how much you agree or disagree with the
provided statement. [required, each statement is scored on a 7-point Likert
from “Strongly Disagree” to “Strongly Agree”.]

• I consider Sodalite easy to use and easy to achieve what I want

• I consider my interactions with Sodalite to be understandable and clear

• I consider it easy for me to learn how to use Sodalite

• I would consider Sodalite useful for my daily work

• I enjoyed the features provided by Sodalite

• If possible, I would like to have the tool available for my professional or
personal use

• If possible, I would recommend Sodalite to my friends and colleagues
doing programming work

E.2. Post-Task Survey 205

Background Questions

Please answer these questions about your programming background.

1. What is your profession? (e.g., student, software engineer, manager, etc.) [re-
quired, free response]

2. How many years have you been programming? [required, free response]

3. How many years of professional programming experience do you have? [re-
quired, free response]

4. What is your level of expertise in using JavaScript? [required, 7-point scale
from “No experience” to “Expert”]

Short Answer Questions

Please write a free response to each question about your experience with Sodalite.

1. What did you think about the tool, Sodalite, in general? [free response]

2. In what situations do you think you would most want an documentation tool
like Sodalite? [free response]

3. Are there any features of Sodalite that you found particularly good? [free re-
sponse]

4. Are there any features of Sodalite that you found particularly confusing? [free
response]

5. What new features would you want in an in-editor documentation tool? [free
response]

207

Appendix F

Chapter 7 Study Replication
Materials

The following sections are the study protocol for the Meta-Manager evaluation study
and the post-task survey. Parts of the protocol that were not spoken aloud are high-
lighted in yellow.

F.1 Meta-Manager Study Protocol

Hi, my name is Amber Horvath and I am a 6th year PhD student in the Human-
Computer Interaction Institute working under Dr. Brad Myers. We are researching
how developers manage meta-information related to code provenance and investi-
gating tools to help organize this information.

For the study, you will be using our tool, the “Meta-Manager”, a Visual Studio
Code extension, to investigate a code base and to answer some questions about the
history of the code. The study will begin with a tutorial to familiarize you with our
extension. In the second part, we will walk through a code base and you will use the
tool to answer some questions about the code and its history. Note that you are not
required to program during this task. Do you have any questions? **wait Ok great.

Before we begin, I’d like to review this consent form. send consent form Please
open the link I just sent in the Zoom chat. Please enter your email at the top of
the form. Let me know if you have any questions. When you are ready, there are
two optional permissions you must either agree or disagree to at the bottom of the
document. **wait Please let me know if you agree to me recording this session so I
may start the recording or not. You must also consent to the study by typing in your
name and date. Please let me know once you’ve submitted the form. **wait You will
also receive an email with your response to the form.

*if recording I will begin recording this session.

F.1.1 Tutorial

We will now go through Meta-Manager. I will now give you remote control of my
computer — are you ready? **IF yes, relinquish control — SCREEN SHARE → RE-
MOTE CONTROL → GIVE CONTROL **open ExtractorGithubGist.ts

208 Appendix F. Chapter 7 Study Replication Materials

Meta-Manager is a code history and information explorer. It is shown in the
bottom part of the screen. On the left, there is a timeline chart of the code in this
file, in this case “ExtractorGithubGist.ts”. The y-axis represents the line count of the
file, and the x-axis represents the various edits that the Meta Manager recorded over
time.

On the right side of the screen, you can see information about the various parts
of the code as it appeared at that point in time. Currently, we are at Version 0, as
shown above the list of code parts, so this is how the code looked when the project
started. Below “Version 0”, we can see a box that says “Arrow Function”. Note how
“Arrow Function” is highlighted in dark blue — the blue in the chart corresponds to
the “Arrow Function”.

To see the code at this version in time, you can click the box, which will expand.
Try clicking the “Arrow Function” box. **wait Good. Notice how you can see the
code.

To see other versions of the code, we can use the scrubber on the bottom axis of
the chart. **circle scrubber You can click and drag the scrubber ball to flip through
different versions of the file across time. Try dragging the scrubber **wait. Good.
Note how the right side code box has updated with new code, a new time stamp,
and a new version number.

Sometimes, the x-axis will have additional points of information that we can
investigate. Look at the x-axis at point 12 and point 25 — note how there are labels
that says “Copied code”. We can click on these labels to jump to those code versions
— try clicking on the label that says “Copied code” at point 12. **wait Good. Notice
how the code box updated with some additional information and buttons.

These gray buttons act as filters, while the blue buttons are an action. “Show
Copied Code” will filter the scrubber timeline to only show “Copied code” events
related to this particular function. “Show Pasted Code” will filter to only show code
that was pasted in this function. “Show code pasted from online” will filter to only
show code that was taken from online sources. Try clicking the different filter but-
tons and watch how the timeline updates **wait good. Now select all the filters
again so we can see all of the events along the timeline.

Meanwhile, the blue buttons are different actions that we can take with the code
in the box. “See Code Now” acts as a search function — if you have some code
selected in the code version, pressing the “Search for Selected Code” button will
search forwards in time from the code version to now to see where the code is and
where it was. The timeline will update with a list of places in which that code existed
and how it changed over time. Try selecting the code // abstract class function,
then clicking “Search for Selected Code”. **wait Notice how the timeline updated
with new labels that says “Search Result”. Click the “Search Result” label. **wait
Now we can see the first instance after our point in time where the code appeared
is highlighted in orange. There are also arrow buttons that will move you through
each search result — try clicking the right button. **wait Good. Once you are done

F.1. Meta-Manager Study Protocol 209

searching, you can click the “Clear search?” button above the code box. Try clearing
the search — good. Let’s look at “Copied code” at version 25.

In the case of “Copied code”, the Meta-Manager keeps track of what code has
been copied and where it eventually gets pasted. Notice how, instead of just say-
ing the version number, the text says “Copied sourceUrl: options.url from Arrow
Function”. If you scroll down, you will also see that the code that has been copied
is highlighted in the code version. With a copied code block, we can get some addi-
tional information. The “See All Paste Locations” button at the top of the box will
filter the timeline to show instances where that code has been pasted. Try clicking
“See All Paste Locations”. **wait Good. In instances where the code was pasted
outside of the currently-open file, the code box will say where the code was pasted,
at what version, and what the code looked like at the time of the paste. Let’s look at
this paste event. Try clicking the “Pasted code” label. Good.

Meta-Manager similarly keeps track of code that has been pasted from various
locations. Like with copy, the text in the box will say what code has been pasted
and the code will be highlighted in the code version. Additionally, we can see the
corresponding copy event by clicking “See Corresponding Copy”, and we can see
what other code was pasted with the same value by clicking “See All Other Paste
Locations”. Try clicking “See All Other Paste Locations” **wait Good. “See Corre-
sponding Copy” and “See All Other Paste Locations” will also show previews of the
copied or pasted code in the case the copy or paste happened in a different file.

Meta-Manager keeps track of additional information for code that was pasted
from online. Let’s look at some code that was pasted from Stack Overflow — we
can first reset our filter by clicking the “Reset filter?” button so we can see all events
again — try clicking that button. **wait Good. Now, look at index 27 on the timeline,
where the label says “Stack Overflow”. Try clicking that label. **wait Good.

Like the other paste events, we can see what code was copied from Stack Over-
flow at the highlight in the code box, and the same filtering and searching activities
are supported. We can also see some information about the Stack Overflow question,
including the title, views, votes and when it was posted. If we want even more infor-
mation, we can click the “See More” button, which will pull up the original question
in Visual Studio Code. Try clicking “see More”. **wait Good - note how it appeared
above as a window — any tabs opened like this will have the title “Meta Manager”,
in case you lose it among your other windows. Meta-Manager also supports other
websites such as ChatGPT which will have information about the ChatGPT thread
some code was copied from. If the user made any programming-related Google
searches prior to copy-pasting from these sources, that query will also be included
as part of the summary details.

Aside from the code boxes, you can do some other activities with Meta-Manager.
Similar to how we can search for code using the “See Code Now” button in the
code box, you can also search for code using the search box in the top right corner.
Try searching for the word “target”. **Wait Note how the timeline updates with

210 Appendix F. Chapter 7 Study Replication Materials

instances where the code “target” appeared in the version.
Another way of searching for code is backwards through time — we can do this

by selecting some code in the editor and using the right-click menu to choose “Meta
Manager: Search Code Across Time”. Try selecting line 9 and the code const target

equals parse HTML. **wait Then, right click the code and click “Meta Manager:
Search for Code Across Time”. **wait Notice how the timeline has now updated
with labels that says “Search Result” — this search will look for instances in which
the code changed over time and when it first appears. If you click at index 4, you
should see the first instance of this code line. You can then scrub thru to see what
happened to that code — in this case, it was removed up until version 23, which
is also marked as a “Search Result” along the timeline. Note that the search is not
perfect — your best bet is to start at the rightmost point, thus, most recent, and go
through the search results from right to left. Once we are done searching, we can
click the “Clear search?” button - try clicking that. **wait Good.

You may see that there are many timeline events in close succession — in cases
like that, it may be easier to look at each individual version by zooming in on the
chart. To zoom, you can set the scrubber at where you want the zoom to begin, then
hold down the shift key and click where you want the zoom to end. Try setting the
scrubber at index 20 **wait — now shift and click at index 32 **wait. Now you can
see the chart at a closer level and see the marked indices along the timeline more
closely. To leave this view, you can click the “Reset version range” button. **wait
Good.

That does it for the tutorial — do you have any questions? During the study, you
are free to ask me any questions about how to use the tool. **wait Okay, great.

F.1.2 Task

For the study, we are going to explore this repository. For context, the repository is
for a small Visual Studio Code extension that searches the internet to supply in-line
suggestions, similar to how the popular CoPilot extension works. A “suggestion” in
Visual Studio Code is essentially an auto-complete option.

Your task will be to use the Meta-Manager to explore the code in order to answer
some questions about the code history that I will be asking. All of the questions
should be answerable with only the tool — thus, there should be no need to add or
remove code, or search information online. If you do have questions about some
detail of the Visual Studio Code API or TypeScript, you can ask me, but I may not
answer if it is information that you can get using the tool. You are also free to ask
me to repeat any of the questions. If you feel you are unable to answer a question,
let me know and we will move on. I will be allowing 10 minutes for each question.

Additionally, I would like you to think aloud as you use the tool to try and an-
swer the question. Are you ready? **wait

Okay, to begin, open “config.ts”. **wait This file is used for configuring how the
extension should be triggered to produce a suggestion.

F.2. Post-Task Survey 211

First question: In config.ts, there is a regex for search pattern matching. Can you
tell me what it is trying to match on and why? Let me know when you think you
have answered the question and what your answer is.

**Wait
Second question: There is a bug in the commented out code, can you, without

running the code, find where the bug was and what happened.
**Wait
Great — now let’s move to ExtractorStackOverflow.ts. Note that, because of

Zoom, the extension may be slightly slower to load on these files with many many
versions — sorry in advance!

Third question: Prior to using parseHTML on line 18, the author was using a
different API — what was it? Why did they stop using the previous API? Like before,
think aloud and let me know when you believe you’ve found an answer.

**wait
Fourth question: Recently, some code was added that came from a different file.

Can you find that code and explain what changed?
**wait
Now, we will go to “search.ts”. **open search.ts and wait
Fifth question: Look at lines 65 to 67 — there is a commented out forEach loop.

Can you find the last time it was used? Please explain why it was removed and what
it was replaced with. Let me know once you’ve come to an answer.

**wait
Lastly, we will look at extension.ts. **open extension.ts and wait
Sixth question: What code was generated by an AI system? Additionally, what

ended up happening to it? Acceptable answers are “it was deleted”, “it was edited”,
“it was commented out”, etc. **wait

Seventh question: What were all the different things that the programmer tried
for setting match? Please find the versions in which match was changed. **wait

Eighth question: Some code from activate was moved into a different file. When
did this happen and what was the code that was moved? **wait

F.1.3 End Task

That’s it! I will now have you complete a survey (see Section F.2) about your back-
ground and experience using the tool. You can take control of your own screen
again.

F.2 Post-Task Survey

Please fill out the following scale questions about your thoughts on the usability
and usefulness of Meta-Manager. The following page will have some additional
questions about your background. The last page will ask about your experience
using Meta-Manager.

212 Appendix F. Chapter 7 Study Replication Materials

1. For the following 7 statements, rate how much you agree or disagree with the
provided statement. [required, each statement is scored on a 7-point Likert
from “Strongly Disagree” to “Strongly Agree”.]

• I consider Meta-Manager easy to use and easy to achieve what I want

• I consider my interactions with Meta-Manager to be understandable and
clear

• I consider it easy for me to learn how to use Meta-Manager

• I would consider Meta-Manager useful for my daily work

• I enjoyed the features provided by Meta-Manager

• If possible, I would like to have the tool available for my professional or
personal use

• If possible, I would recommend Meta-Manager to my friends and col-
leagues doing programming work

Background Questions

Please answer these questions about your programming background.

1. What is your profession? (e.g., student, software engineer, manager, etc.) [re-
quired, free response]

2. How many years have you been programming? [required, free response]

3. How many years of professional programming experience do you have? [re-
quired, free response]

4. What is your level of expertise in using JavaScript? [required, 7-point scale
from “No experience” to “Expert”]

5. What is your level of expertise in using TypeScript? [required, 7-point scale
from “No experience” to “Expert”]

Short Answer Questions

Please write a free response to each question about your experience with Meta-
Manager, the tool you used, and the questions you answered during the study. Note
that some of these questions are required.

1. What did you think about the tool, Meta-Manager, in general? [free response]

2. In what situations do you think you would most want a code history tool like
Meta-Manager? [free response]

3. Are there any features of Meta-Manager that you found particularly good?
[free response]

F.2. Post-Task Survey 213

4. Are there any features of Meta-Manager that you found particularly confus-
ing? [free response]

5. What new features would you want in a code history tool? [free response]

6. For the following questions that you answered during the study, please rate
how often you have asked similar questions during your own programming.
[required, each statement is scored on a 5-point Likert from “Never Asked” to
“Always Asked”.]

• What is the design rationale behind some code?

• Where did a code bug come from and how was it fixed?

• Why was a particular API used?

• When did we stop using this code?

• Where did this code come from?

• Why was this code added?

• What website did this code come from?

• How was this code refactored?

• What did the original author of this code try when implementing some
code?

215

Appendix G

Chapter 8 Interview Protocol

The following section is the interview protocol used in the exploratory interview dis-
cussed in Chapter 8 (see Section 8.3). The interview was semi-structured, so follow-
up questions were asked if they organically arose given a participant’s answer to a
question. Parts of the protocol that were not spoken aloud are highlighted in yellow.

G.1 Protocol

Hi, my name is Amber Horvath and I am a researcher in the HCII at Carnegie Mellon
University. We are studying how developers utilize log statements and the subse-
quent output when understanding code. We are specifically interested in the sorts of
questions you have when interpreting log statement output and how those outputs
relate to code changes over time.

I will ask you questions about how you create log statements, how you manage
the statements, and how you interpret their output, with a particular emphasis on
the types of questions you are asking at each stage of this process. At any point, if
you feel comfortable doing so, you can show your code, log statements, or outputs,
if the outputs are saved. Throughout this interview, I may use the terms “log state-
ments”, “print statements”, and “console logs” interchangeably — all of those terms
refer to the source code you wrote to produce some observable output in a console, termi-
nal, or log file. Similarly, I may use the terms “output” and “log” interchangeably
— when I use those terms, I am referring to the observable content produced by the log
statement in the source code you wrote. Do you have any questions? **wait

Here is the consent form ***pause*... Do you consent to being recorded? ***if yes,
record*

G.1.1 Questions

1. Can you describe a bit about you, what kind of programming you do, your
position, etc.?

• Can you recall to me your most recent debugging session? Please discuss
how, if at all, you used log statements, such as console.log, during this
session.

216 Appendix G. Chapter 8 Interview Protocol

2. So now, think about your debugging session. When you were running your
code, how did you find the outputs you are interested in?

• What questions or queries would you like to be able to ask to find log
statements and outputs of interest? For example, a query such as “find
every output produced by this statement where the function returned
undefined”.

3. What questions did you have when you are interpreting logs produced by
multiple related log statements? For example, you have a log statement in
function A and function B with both logging the same variable C at different
points during the code’s execution.

• How did you find and organize outputs produced by different log state-
ments?

• What questions or queries would you like to be able to ask to help in
reasoning about multiple related log statements?

4. Across different runs of your code, how did you interpret outputs produced
by the same log statement?

• What questions did you have when doing this interpretation?

• What strategies did you use when doing this interpretation?

• What questions or queries would you like to be able to ask to help with
interpreting log values produced by the same statement across time?

5. How did you think about your log statements in terms of their relationships to
one another?

• Did you think about them in terms of their execution order? In terms of
program structure? Some other way?

• What queries or questions would you like to be able to ask a system in
terms of visualizing and organizing log statements given their relation-
ship?

6. How did you keep track of your code edits and how the log statements’ out-
puts change with respect to those edits?

• What sorts of questions or queries would you want to ask your code his-
tory or output in order to help with this sense making process?

7. Do you have any other log-related thoughts that have not come up orgnani-
cally during this interview? Any other log-related queries you would like to
be able to ask?

Okay, with that we are done with the interview. Thank you so much for your
time and please let me know if you have any other log-related thoughts.

217

Bibliography

[1] Marjan Adeli, Nicholas Nelson, Souti Chattopadhyay, Hayden Coffey, Austin
Henley, and Anita Sarma. “Supporting code comprehension via annotations:
Right information at the right time and place”. In: 2020 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). IEEE. 2020, pp. 1–
10.

[2] Emad Aghajani, Gabriele Bavota, Mario Linares-Vásquez, and Michele Lanza.
“Automated documentation of android apps”. In: IEEE Transactions on Soft-
ware Engineering 47.1 (2019), pp. 204–220.

[3] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele
Bavota, Michele Lanza, and David C. Shepherd. “Software Documentation:
The Practitioners’ Perspective”. In: Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering. ICSE ’20. Seoul, South Korea: Asso-
ciation for Computing Machinery, 2020, 590–601. ISBN: 9781450371216. DOI:
10.1145/3377811.3380405. URL: https://doi.org/10.1145/3377811.
3380405.

[4] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-
Vásquez, Laura Moreno, Gabriele Bavota, and Michele Lanza. “Software Doc-
umentation Issues Unveiled”. In: 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). Montreal, QC, Canada: IEEE, 2019, pp. 1199–
1210. DOI: 10.1109/ICSE.2019.00122.

[5] Maristella Agosti, Giorgetta Bonfiglio-Dosio, and Nicola Ferro. “A historical
and contemporary study on annotations to derive key features for systems
design”. In: International Journal on Digital Libraries 8.1 (2007), pp. 1–19.

[6] Mohammad Allahbakhsh, Boualem Benatallah, Aleksandar Ignjatovic, Hamid
Reza Motahari-Nezhad, Elisa Bertino, and Schahram Dustdar. “Quality Con-
trol in Crowdsourcing Systems: Issues and Directions”. In: IEEE Internet Com-
puting 17 (2 2013), pp. 76–81. DOI: 10.1109/MIC.2013.20. URL: https://doi.
org/10.1109/MIC.2013.20.

[7] Sven Amann, Sebastian Proksch, Sarah Nadi, and Mira Mezini. “A Study of
Visual Studio Usage in Practice”. In: 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER). Vol. 1. 2016, pp. 124–
134. DOI: 10.1109/SANER.2016.39.

https://doi.org/10.1145/3377811.3380405
https://doi.org/10.1145/3377811.3380405
https://doi.org/10.1145/3377811.3380405
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1109/MIC.2013.20
https://doi.org/10.1109/MIC.2013.20
https://doi.org/10.1109/MIC.2013.20
https://doi.org/10.1109/SANER.2016.39

218 Bibliography

[8] Muhammad Asaduzzaman, Ahmed Shah Mashiyat, Chanchal K. Roy, and
Kevin A. Schneider. “Answering Questions about Unanswered Questions of
Stack Overflow”. In: MSR 2013. San Francisco, CA, USA: IEEE, 2013, pp. 97–
100. DOI: 10.1109/MSR.2013.6624015. URL: https://doi.org/10.1109/MSR.
2013.6624015.

[9] Alberto Bacchelli and Christian Bird. “Expectations, outcomes, and challenges
of modern code review”. In: 2013 35th International Conference on Software En-
gineering (ICSE). 2013, pp. 712–721. DOI: 10.1109/ICSE.2013.6606617.

[10] Jeff Baker, Donald Jones, and Jim Burkman. “Using visual representations
of data to enhance sensemaking in data exploration tasks”. In: Journal of the
Association for Information Systems 10.7 (2009), p. 2.

[11] Sebastian Baltes, Richard Kiefer, and Stephan Diehl. “Attribution Required:
Stack Overflow Code Snippets in GitHub Projects”. In: 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). 2017, pp. 161–
163. DOI: 10.1109/ICSE-C.2017.99.

[12] Sebastian Baltes, Christoph Treude, and Stephan Diehl. “SOTorrent: Studying
the Origin, Evolution, and Usage of Stack Overflow Code Snippets”. In: 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR).
2019, pp. 191–194. DOI: 10.1109/MSR.2019.00038.

[13] Liang Bao, Qian Li, Peiyao Lu, Jie Lu, Tongxiao Ruan, and Ke Zhang. “Ex-
ecution anomaly detection in large-scale systems through console log anal-
ysis”. In: Journal of Systems and Software 143 (2018), pp. 172–186. ISSN: 0164-
1212. DOI: https://doi.org/10.1016/j.jss.2018.05.016. URL: https:
//www.sciencedirect.com/science/article/pii/S0164121218301031.

[14] Deborah K Barreau. “Context as a factor in personal information manage-
ment systems”. In: Journal of the American society for information science 46.5
(1995), pp. 327–339.

[15] David Bawden, Clive Holtham, and Nigel Courtney. “Perspectives on infor-
mation overload”. In: Aslib proceedings. Vol. 51. 8. MCB UP Ltd. 1999, pp. 249–
255.

[16] Laura Beckwith, Cory Kissinger, Margaret Burnett, Susan Wiedenbeck, Joseph
Lawrance, Alan Blackwell, and Curtis Cook. “Tinkering and gender in end-
user programmers’ debugging”. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI ’06. Montréal, Québec, Canada:
Association for Computing Machinery, 2006, 231–240. ISBN: 1595933727. DOI:
10.1145/1124772.1124808. URL: https://doi.org/10.1145/1124772.
1124808.

https://doi.org/10.1109/MSR.2013.6624015
https://doi.org/10.1109/MSR.2013.6624015
https://doi.org/10.1109/MSR.2013.6624015
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/ICSE-C.2017.99
https://doi.org/10.1109/MSR.2019.00038
https://doi.org/https://doi.org/10.1016/j.jss.2018.05.016
https://www.sciencedirect.com/science/article/pii/S0164121218301031
https://www.sciencedirect.com/science/article/pii/S0164121218301031
https://doi.org/10.1145/1124772.1124808
https://doi.org/10.1145/1124772.1124808
https://doi.org/10.1145/1124772.1124808

Bibliography 219

[17] Andrew Begel, Yit Phang Khoo, and Thomas Zimmermann. “Codebook: Dis-
covering and Exploiting Relationships in Software Repositories”. In: Proceed-
ings of the 32nd ACM/IEEE International Conference on Software Engineering -
Volume 1. ICSE ’10. Cape Town, South Africa: Association for Computing Ma-
chinery, 2010, 125–134. ISBN: 9781605587196. DOI: 10.1145/1806799.1806821.
URL: https://doi.org/10.1145/1806799.1806821.

[18] Andrew Begel and Beth Simon. “Novice Software Developers, All over Again”.
In: Proceedings of the Fourth International Workshop on Computing Education
Research. ICER ’08. Sydney, Australia: Association for Computing Machin-
ery, 2008, 3–14. ISBN: 9781605582160. DOI: 10.1145/1404520.1404522. URL:
https://doi.org/10.1145/1404520.1404522.

[19] Moritz Beller, Niels Spruit, Diomidis Spinellis, and Andy Zaidman. “On the
dichotomy of debugging behavior among programmers”. In: Proceedings of
the 40th International Conference on Software Engineering. ICSE ’18. Gothen-
burg, Sweden: Association for Computing Machinery, 2018, 572–583. ISBN:
9781450356381. DOI: 10.1145/3180155.3180175. URL: https://doi.org/10.
1145/3180155.3180175.

[20] Moritz Beller, Niels Spruit, and Andy Zaidman. “How developers debug”.
In: PeerJ Preprints 5 (2017), e2743v1.

[21] Michael Bernstein, Max Van Kleek, David Karger, and MC Schraefel. “Infor-
mation scraps: How and why information eludes our personal information
management tools”. In: ACM Transactions on Information Systems (TOIS) 26.4
(2008), pp. 1–46.

[22] Michael Scott Bernstein. “Information Scraps: Understanding and Design”.
PhD thesis. Citeseer, 2008.

[23] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Prem-
raj, and Thomas Zimmermann. “What makes a good bug report?” In: Pro-
ceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering. 2008, pp. 308–318.

[24] Christian Bird, Denae Ford, Thomas Zimmermann, Nicole Forsgren, Eirini
Kalliamvakou, Travis Lowdermilk, and Idan Gazit. “Taking Flight with Copi-
lot: Early insights and opportunities of AI-powered pair-programming tools”.
In: Queue 20.6 (2023), 35–57. ISSN: 1542-7730. DOI: 10.1145/3582083. URL:
https://doi.org/10.1145/3582083.

[25] Tristan Blanc-Brude and Dominique L. Scapin. “What do people recall about
their documents? implications for desktop search tools”. In: Proceedings of the
12th International Conference on Intelligent User Interfaces. IUI ’07. Honolulu,
Hawaii, USA: Association for Computing Machinery, 2007, 102–111. ISBN:
1595934812. DOI: 10.1145/1216295.1216319. URL: https://doi.org/10.
1145/1216295.1216319.

https://doi.org/10.1145/1806799.1806821
https://doi.org/10.1145/1806799.1806821
https://doi.org/10.1145/1404520.1404522
https://doi.org/10.1145/1404520.1404522
https://doi.org/10.1145/3180155.3180175
https://doi.org/10.1145/3180155.3180175
https://doi.org/10.1145/3180155.3180175
https://doi.org/10.1145/3582083
https://doi.org/10.1145/3582083
https://doi.org/10.1145/1216295.1216319
https://doi.org/10.1145/1216295.1216319
https://doi.org/10.1145/1216295.1216319

220 Bibliography

[26] Jürgen Börstler and Barbara Paech. “The role of method chains and com-
ments in software readability and comprehension—An experiment”. In: IEEE
Transactions on Software Engineering 42.9 (2016), pp. 886–898.

[27] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph
J. LaViola. “Code Bubbles: A Working Set-Based Interface for Code Under-
standing and Maintenance”. In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems. CHI ’10. Atlanta, Georgia, USA: Associa-
tion for Computing Machinery, 2010, 2503–2512. ISBN: 9781605589299. DOI:
10.1145/1753326.1753706. URL: https://doi.org/10.1145/1753326.
1753706.

[28] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. “Example-
Centric Programming: Integrating Web Search into the Development Envi-
ronment”. In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. CHI ’10. Atlanta, Georgia, USA: Association for Computing
Machinery, 2010, 513–522. ISBN: 9781605589299. DOI: 10 . 1145 / 1753326 .
1753402. URL: https://doi.org/10.1145/1753326.1753402.

[29] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R.
Klemmer. “Two Studies of Opportunistic Programming: Interleaving Web
Foraging, Learning, and Writing Code”. In: CHI ’09. CHI ’09. Boston, MA,
USA: Association for Computing Machinery, 2009, 1589–1598. ISBN: 9781605582467.
DOI: 10.1145/1518701.1518944. URL: https://doi.org/10.1145/1518701.
1518944.

[30] Margaret Burnett, Simone Stumpf, Jamie Macbeth, Stephann Makri, Laura
Beckwith, Irwin Kwan, Anicia Peters, and William Jernigan. “GenderMag: A
Method for Evaluating Software’s Gender Inclusiveness”. In: Interacting with
Computers 28.6 (Nov. 2016). DOI: 10.1145/3134737. URL: https://doi.org/
10.1145/3134737.

[31] CodeSandbox BV. CodeSandbox: Online Code Editor and IDE for Rapid Web De-
velopment. CodeSandbox BV. 2021. URL: https://codesandbox.io/.

[32] Paul Chandler and John Sweller. “Cognitive load theory and the format of
instruction”. In: Cognition and instruction 8.4 (1991), pp. 293–332.

[33] Joseph Chee Chang, Nathan Hahn, Yongsung Kim, Julina Coupland, Bradley
Breneisen, Hannah S Kim, John Hwong, and Aniket Kittur. “When the Tab
Comes Due:Challenges in the Cost Structure of Browser Tab Usage”. In: Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
CHI ’21. Yokohama, Japan: Association for Computing Machinery, 2021. ISBN:
9781450380966. DOI: 10.1145/3411764.3445585. URL: https://doi.org/10.
1145/3411764.3445585.

https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1145/1753326.1753402
https://doi.org/10.1145/1753326.1753402
https://doi.org/10.1145/1753326.1753402
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/3134737
https://doi.org/10.1145/3134737
https://doi.org/10.1145/3134737
https://codesandbox.io/
https://doi.org/10.1145/3411764.3445585
https://doi.org/10.1145/3411764.3445585
https://doi.org/10.1145/3411764.3445585

Bibliography 221

[34] Joseph Chee Chang, Nathan Hahn, and Aniket Kittur. “Supporting Mobile
Sensemaking Through Intentionally Uncertain Highlighting”. In: Proceedings
of the 29th Annual Symposium on User Interface Software and Technology. UIST
’16. Tokyo, Japan: Association for Computing Machinery, 2016, 61–68. ISBN:
9781450341899. DOI: 10.1145/2984511.2984538. URL: https://doi.org/10.
1145/2984511.2984538.

[35] Preetha Chatterjee, Manziba Akanda Nishi, Kostadin Damevski, Vinay Au-
gustine, Lori Pollock, and Nicholas A. Kraft. “What information about code
snippets is available in different software-related documents? An exploratory
study”. In: SANER 2017. New York City, NY, USA: IEEE, 2017, pp. 382–386.

[36] Eason Chen, Ray Huang, Han-Shin Chen, Yuen-Hsien Tseng, and Liang-Yi
Li. “GPTutor: A ChatGPT-Powered Programming Tool for Code Explana-
tion”. In: Artificial Intelligence in Education. Posters and Late Breaking Results,
Workshops and Tutorials, Industry and Innovation Tracks, Practitioners, Doctoral
Consortium and Blue Sky. Ed. by Ning Wang, Genaro Rebolledo-Mendez, Va-
nia Dimitrova, Noboru Matsuda, and Olga C. Santos. Cham: Springer Nature
Switzerland, 2023, pp. 321–327. ISBN: 978-3-031-36336-8.

[37] J. C. Chen and S. J. Huang. “An empirical analysis of the impact of software
development problem factors on software maintainability”. In: Journal of Sys-
tems and Software 82.6 (2009).

[38] Kai Chen, Stephen R. Schach, Liguo Yu, Jeff Offutt, and Gillian Z. Heller.
“Open-Source Change Logs”. In: Empirical Software Engineering 9.3 (Sept. 2004),
pp. 197–210. ISSN: 1573-7616. DOI: 10.1023/B:EMSE.0000027779.70556.d0.
URL: https://doi.org/10.1023/B:EMSE.0000027779.70556.d0.

[39] Mauro Cherubini, Gina Venolia, Rob DeLine, and Amy J. Ko. “Let’s Go to the
Whiteboard: How and Why Software Developers Use Drawings”. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI
’07. San Jose, California, USA: Association for Computing Machinery, 2007,
557–566. ISBN: 9781595935939. DOI: 10.1145/1240624.1240714. URL: https:
//doi.org/10.1145/1240624.1240714.

[40] Michelene TH Chi, Miriam Bassok, Matthew W Lewis, Peter Reimann, and
Robert Glaser. “Self-explanations: How students study and use examples in
learning to solve problems”. In: Cognitive science 13.2 (1989), pp. 145–182.

[41] Michelene TH Chi, Miriam Bassok, Matthew W Lewis, Peter Reimann, and
Robert Glaser. “Self-explanations: How students study and use examples in
learning to solve problems”. In: Cognitive science 13.2 (1989), pp. 145–182.

[42] Parmit K. Chilana, Amy Ko, and James O. Wobbrock. “LemonAid: selection-
based crowdsourced contextual help for web applications”. In: CHI 2012.
New York City, NY, USA: ACM, 2012, pp. 1549–1558. DOI: 10.1145/2207676.
2208620. URL: https://doi.org/10.1145/2207676.2208620.

https://doi.org/10.1145/2984511.2984538
https://doi.org/10.1145/2984511.2984538
https://doi.org/10.1145/2984511.2984538
https://doi.org/10.1023/B:EMSE.0000027779.70556.d0
https://doi.org/10.1023/B:EMSE.0000027779.70556.d0
https://doi.org/10.1145/1240624.1240714
https://doi.org/10.1145/1240624.1240714
https://doi.org/10.1145/1240624.1240714
https://doi.org/10.1145/2207676.2208620
https://doi.org/10.1145/2207676.2208620
https://doi.org/10.1145/2207676.2208620

222 Bibliography

[43] Bhavya Chopra, Yasharth Bajpai, Param Biyani, Gustavo Soares, Arjun Rad-
hakrishna, Chris Parnin, and Sumit Gulwani. Exploring Interaction Patterns for
Debugging: Enhancing Conversational Capabilities of AI-assistants. 2024. arXiv:
2402.06229 [cs.HC]. URL: https://arxiv.org/abs/2402.06229.

[44] Matteo Ciniselli, Niccolò Puccinelli, Ketai Qiu, and Luca Di Grazia. From To-
day’s Code to Tomorrow’s Symphony: The AI Transformation of Developer’s Routine
by 2030. 2024. arXiv: 2405.12731 [cs.SE]. URL: https://arxiv.org/abs/
2405.12731.

[45] Michael J. Coblenz, Amy J. Ko, and Brad A. Myers. “JASPER: An Eclipse
Plug-in to Facilitate Software Maintenance Tasks”. In: Proceedings of the 2006
OOPSLA Workshop on Eclipse Technology EXchange. eclipse ’06. Portland, Ore-
gon, USA: Association for Computing Machinery, 2006, 65–69. ISBN: 1595936211.
DOI: 10.1145/1188835.1188849. URL: https://doi.org/10.1145/1188835.
1188849.

[46] C.R. Cook, J.C. Scholtz, and J.C. Spohrer. Empirical Studies of Programmers:
Fifth Workshop : Papers Presented at the Fifth Workshop on Empirical Studies of
Programmers, December 3-5, 1993, Palo Alto, CA. Human/computer interac-
tion. Norwood, NJ, USA: Ablex Publishing Corporation, 1993. ISBN: 9781567500899.
URL: https://books.google.com/books?id=rMmxq8q0CGYC.

[47] Joel Cordeiro, Bruno Antunes, and Paulo Gomes. “Context-based search to
overcome learning barriers in software development”. In: 2012 First Interna-
tional Workshop on Realizing AI Synergies in Software Engineering (RAISE). 2012,
pp. 47–51. DOI: 10.1109/RAISE.2012.6227970.

[48] D. Cordes and M. Brown. “The literate-programming paradigm”. In: Com-
puter 24.6 (1991), pp. 52–61. DOI: 10.1109/2.86838.

[49] Carlos J Costa, Manuela Aparicio, and Robert Pierce. “Evaluating informa-
tion sources for computer programming learning and problem solving”. In:
Proceedings of the 9th WSEAS International Conference on APPLIED COMPUTER
SCIENCE. 2009, pp. 218–223.

[50] csillag. Fuzzy Anchoring. Hypothes.is. 2013. URL: https://web.hypothes.is/
blog/fuzzy-anchoring/.

[51] D. Cubranic, G.C. Murphy, J. Singer, and K.S. Booth. “Hipikat: a project mem-
ory for software development”. In: IEEE Transactions on Software Engineering
31.6 (2005), pp. 446–465. DOI: 10.1109/TSE.2005.71.

[52] Alex Cummaudo, Rajesh Vasa, John Grundy, and Mohamed Abdelrazek.
“Requirements of API Documentation: A Case Study Into Computer Vision
Services”. In: IEEE Transactions on Software Engineering (2020), pp. 1–1. DOI:
10.1109/TSE.2020.3047088. URL: https://doi.org/10.1109/TSE.2020.
3047088.

https://arxiv.org/abs/2402.06229
https://arxiv.org/abs/2402.06229
https://arxiv.org/abs/2405.12731
https://arxiv.org/abs/2405.12731
https://arxiv.org/abs/2405.12731
https://doi.org/10.1145/1188835.1188849
https://doi.org/10.1145/1188835.1188849
https://doi.org/10.1145/1188835.1188849
https://books.google.com/books?id=rMmxq8q0CGYC
https://doi.org/10.1109/RAISE.2012.6227970
https://doi.org/10.1109/2.86838
https://web.hypothes.is/blog/fuzzy-anchoring/
https://web.hypothes.is/blog/fuzzy-anchoring/
https://doi.org/10.1109/TSE.2005.71
https://doi.org/10.1109/TSE.2020.3047088
https://doi.org/10.1109/TSE.2020.3047088
https://doi.org/10.1109/TSE.2020.3047088

Bibliography 223

[53] Barthélémy Dagenais and Martin P. Robillard. “Creating and Evolving Devel-
oper Documentation: Understanding the Decisions of Open Source Contrib-
utors”. In: Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering. FSE ’10. Santa Fe, New Mexico, USA:
Association for Computing Machinery, 2010, 127–136. ISBN: 9781605587912.
DOI: 10.1145/1882291.1882312. URL: https://doi.org/10.1145/1882291.
1882312.

[54] Liwei Dai, Wayne G. Lutters, and Carlie Bower. “Why use memo for all?
restructuring mobile applications to support informal note taking”. In: CHI
’05 Extended Abstracts on Human Factors in Computing Systems. CHI EA ’05.
Portland, OR, USA: Association for Computing Machinery, 2005, 1320–1323.
ISBN: 1595930027. DOI: 10.1145/1056808.1056906. URL: https://doi.org/
10.1145/1056808.1056906.

[55] Arghavan Moradi Dakhel, Amin Nikanjam, Foutse Khomh, Michel C. Des-
marais, and Hironori Washizaki. “Generative AI for Software Development:
A Family of Studies on Code Generation”. In: Generative AI for Effective Soft-
ware Development. Ed. by Anh Nguyen-Duc, Pekka Abrahamsson, and Foutse
Khomh. Cham: Springer Nature Switzerland, 2024, pp. 151–172. ISBN: 978-3-
031-55642-5. DOI: 10.1007/978-3-031-55642-5_7. URL: https://doi.org/
10.1007/978-3-031-55642-5_7.

[56] Uri Dekel and James D. Herbsleb. “Reading the documentation of invoked
API functions in program comprehension”. In: 2009 IEEE 17th International
Conference on Program Comprehension. New York City, NY, USA: IEEE, 2009,
pp. 168–177. DOI: 10.1109/ICPC.2009.5090040. URL: https://doi.org/10.
1109/10.1109/ICPC.2009.5090040.

[57] R. DeLine, M. Czerwinski, B. Meyers, G. Venolia, S. Drucker, and G. Robert-
son. “Code Thumbnails: Using Spatial Memory to Navigate Source Code”.
In: Visual Languages and Human-Centric Computing (VL/HCC’06). 2006, pp. 11–
18. DOI: 10.1109/VLHCC.2006.14.

[58] Robert Deline, Mary Czerwinski, and George Robertson. “Easing program
comprehension by sharing navigation data”. In: VLHCC 2005. New York City,
NY, USA: IEEE, 2005, pp. 241–248. DOI: 10.1109/VLHCC.2005.32. URL: https:
//doi.org/10.1109/VLHCC.2005.32.

[59] Robert DeLine and Kael Rowan. “Code canvas: zooming towards better de-
velopment environments”. In: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2. ICSE ’10. Cape Town, South
Africa: Association for Computing Machinery, 2010, 207–210. ISBN: 9781605587196.
DOI: 10.1145/1810295.1810331. URL: https://doi.org/10.1145/1810295.
1810331.

https://doi.org/10.1145/1882291.1882312
https://doi.org/10.1145/1882291.1882312
https://doi.org/10.1145/1882291.1882312
https://doi.org/10.1145/1056808.1056906
https://doi.org/10.1145/1056808.1056906
https://doi.org/10.1145/1056808.1056906
https://doi.org/10.1007/978-3-031-55642-5_7
https://doi.org/10.1007/978-3-031-55642-5_7
https://doi.org/10.1007/978-3-031-55642-5_7
https://doi.org/10.1109/ICPC.2009.5090040
https://doi.org/10.1109/10.1109/ICPC.2009.5090040
https://doi.org/10.1109/10.1109/ICPC.2009.5090040
https://doi.org/10.1109/VLHCC.2006.14
https://doi.org/10.1109/VLHCC.2005.32
https://doi.org/10.1109/VLHCC.2005.32
https://doi.org/10.1109/VLHCC.2005.32
https://doi.org/10.1145/1810295.1810331
https://doi.org/10.1145/1810295.1810331
https://doi.org/10.1145/1810295.1810331

224 Bibliography

[60] Robert DeLine, Gina Venolia, and Kael Rowan. “Software development with
code maps”. In: Commun. ACM 53.8 (2010), 48–54. ISSN: 0001-0782. DOI: 10.
1145/1787234.1787250. URL: https://doi.org/10.1145/1787234.1787250.

[61] Google Developers. Cloud Firestore: Store and sync app data at global scale. Google
LLC. 2022. URL: https://firebase.google.com/products/firestore.

[62] Rui Ding, Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Qingwei Lin,
Qiang Fu, Dongmei Zhang, and Tao Xie. “Log2: A Cost-Aware Logging Mech-
anism for Performance Diagnosis”. In: 2015 USENIX Annual Technical Con-
ference (USENIX ATC 15). Santa Clara, CA: USENIX Association, July 2015,
pp. 139–150. ISBN: 978-1-931971-225. URL: https://www.usenix.org/conference/
atc15/technical-session/presentation/ding.

[63] Ekwa Duala-Ekoko and Martin P. Robillard. “Asking and answering ques-
tions about unfamiliar APIs: An exploratory study”. In: ICSE 2012. New York
City, NY, USA: IEEE, 2012, pp. 266–276.

[64] Ralph H. Earle, Mark A. Rosso, and Kathryn E. Alexander. “User preferences
of software documentation genres”. In: Proceedings of the 33rd Annual Interna-
tional Conference on the Design of Communication. SIGDOC ’15. Limerick, Ire-
land: Association for Computing Machinery, 2015. ISBN: 9781450336482. DOI:
10.1145/2775441.2775457. URL: https://doi.org/10.1145/2775441.
2775457.

[65] S.C. Eick, J.L. Steffen, and E.E. Sumner. “Seesoft-a tool for visualizing line ori-
ented software statistics”. In: IEEE Transactions on Software Engineering 18.11
(1992), pp. 957–968. DOI: 10.1109/32.177365.

[66] Daniel S. Eisenberg, Jeffrey Stylos, and Brad A. Myers. “Apatite: A New In-
terface for Exploring APIs”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’10. Atlanta, Georgia, USA: Association for
Computing Machinery, 2010, 1331–1334. ISBN: 9781605589299. DOI: 10.1145/
1753326.1753525. URL: https://doi.org/10.1145/1753326.1753525.

[67] Elastic. Free and Open Search: Elasticsearch. Elastic. 2021. URL: https://www.
elastic.co/.

[68] Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and Andreas Stefik. “How
do API documentation and static typing affect API usability?” In: ICSE 2014.
New York City, NY, USA: ACM, 2014, pp. 632–642. DOI: 10.1145/2568225.
2568299. URL: https://doi.org/10.1145/2568225.2568299.

[69] Facebook. React - A JavaScript library for building user interfaces. 2023. URL:
https://reactjs.org/.

[70] Jingchao Fang, Yanhao Wang, Chi-Lan Yang, and Hao-Chuan Wang. “Note-
CoStruct: Powering Online Learners with Socially Scaffolded Note Taking
and Sharing”. In: Extended Abstracts of the 2021 CHI Conference on Human Fac-
tors in Computing Systems. New York, NY, USA: Association for Computing

https://doi.org/10.1145/1787234.1787250
https://doi.org/10.1145/1787234.1787250
https://doi.org/10.1145/1787234.1787250
https://firebase.google.com/products/firestore
https://www.usenix.org/conference/atc15/technical-session/presentation/ding
https://www.usenix.org/conference/atc15/technical-session/presentation/ding
https://doi.org/10.1145/2775441.2775457
https://doi.org/10.1145/2775441.2775457
https://doi.org/10.1145/2775441.2775457
https://doi.org/10.1109/32.177365
https://doi.org/10.1145/1753326.1753525
https://doi.org/10.1145/1753326.1753525
https://doi.org/10.1145/1753326.1753525
https://www.elastic.co/
https://www.elastic.co/
https://doi.org/10.1145/2568225.2568299
https://doi.org/10.1145/2568225.2568299
https://doi.org/10.1145/2568225.2568299
https://reactjs.org/

Bibliography 225

Machinery, 2021. Chap. Extended Abstracts of the 2021 CHI Conference on
Human Factors in Computing Systems, pp. 1–5. ISBN: 9781450380959. URL:
https://doi.org/10.1145/3411763.3451694.

[71] Kasra Ferdowsi, Ruanqianqian (Lisa) Huang, Michael B. James, Nadia Po-
likarpova, and Sorin Lerner. “Validating AI-Generated Code with Live Pro-
gramming”. In: Proceedings of the CHI Conference on Human Factors in Com-
puting Systems. CHI ’24. Honolulu, HI, USA: Association for Computing Ma-
chinery, 2024. ISBN: 9798400703300. DOI: 10.1145/3613904.3642495. URL:
https://doi.org/10.1145/3613904.3642495.

[72] Kristie Fisher, Scott Counts, and Aniket Kittur. “Distributed sensemaking:
improving sensemaking by leveraging the efforts of previous users”. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI
’12. Austin, Texas, USA: Association for Computing Machinery, 2012, 247–256.
ISBN: 9781450310154. DOI: 10.1145/2207676.2207711. URL: https://doi.
org/10.1145/2207676.2207711.

[73] Scott D. Fleming, Chris Scaffidi, David Piorkowski, Margaret Burnett, Rachel
Bellamy, Joseph Lawrance, and Irwin Kwan. “An Information Foraging The-
ory Perspective on Tools for Debugging, Refactoring, and Reuse Tasks”. In:
ACM Trans. Softw. Eng. Methodol. 22.2 (2013). ISSN: 1049-331X. DOI: 10.1145/
2430545.2430551. URL: https://doi.org/10.1145/2430545.2430551.

[74] Beat Fluri, Michael Wursch, and Harald C Gall. “Do code and comments co-
evolve? on the relation between source code and comment changes”. In: 14th
Working Conference on Reverse Engineering (WCRE 2007). IEEE. 2007, pp. 70–
79.

[75] Daniela Fogli, Giuseppe Fresta, and Piero Mussio. “On electronic annota-
tion and its implementation”. In: AVI 2004. New York, NY, USA: ACM, 2004,
pp. 98–102. DOI: 10.1145/989863.989877. URL: https://doi.org/10.1145/
989863.989877.

[76] Andrew Forward and Timothy C. Lethbridge. “The Relevance of Software
Documentation, Tools and Technologies: A Survey”. In: Proceedings of the 2002
ACM Symposium on Document Engineering. DocEng ’02. McLean, Virginia,
USA: Association for Computing Machinery, 2002, 26–33. ISBN: 1581135947.
DOI: 10.1145/585058.585065. URL: https://doi.org/10.1145/585058.
585065.

[77] Adam Fourney and Meredith Ringel Morris. “Enhancing Technical Q&A Fo-
rums with CiteHistory”. In: ICWSM 2013. Palo Alto, CA, USA: AAAI, 2013,
pp. 1–10.

[78] Thomas Fritz and Gail C Murphy. “Using information fragments to answer
the questions developers ask”. In: Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering-Volume 1. 2010, pp. 175–184.

https://doi.org/10.1145/3411763.3451694
https://doi.org/10.1145/3613904.3642495
https://doi.org/10.1145/3613904.3642495
https://doi.org/10.1145/2207676.2207711
https://doi.org/10.1145/2207676.2207711
https://doi.org/10.1145/2207676.2207711
https://doi.org/10.1145/2430545.2430551
https://doi.org/10.1145/2430545.2430551
https://doi.org/10.1145/2430545.2430551
https://doi.org/10.1145/989863.989877
https://doi.org/10.1145/989863.989877
https://doi.org/10.1145/989863.989877
https://doi.org/10.1145/585058.585065
https://doi.org/10.1145/585058.585065
https://doi.org/10.1145/585058.585065

226 Bibliography

[79] Thomas Fritz, Jingwen Ou, Gail C. Murphy, and Emerson Murphy-Hill. “A
Degree-of-Knowledge Model to Capture Source Code Familiarity”. In: Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing - Volume 1. ICSE ’10. Cape Town, South Africa: Association for Comput-
ing Machinery, 2010, 385–394. ISBN: 9781605587196. DOI: 10.1145/1806799.
1806856. URL: https://doi.org/10.1145/1806799.1806856.

[80] J. Froehlich and P. Dourish. “Unifying artifacts and activities in a visual tool
for distributed software development teams”. In: Proceedings. 26th Interna-
tional Conference on Software Engineering. 2004, pp. 387–396. DOI: 10.1109/
ICSE.2004.1317461.

[81] Sina Gholamian and Paul A. S. Ward. A Comprehensive Survey of Logging in
Software: From Logging Statements Automation to Log Mining and Analysis. 2022.
arXiv: 2110.12489 [cs.SE]. URL: https://arxiv.org/abs/2110.12489.

[82] GitHub. GitHub Copilot. Microsoft. 2024. URL: https://github.com/features/
copilot.

[83] Max Goldman and Robert C. Miller. “Codetrail: Connecting source code and
web resources”. In: Journal of Visual Languages and Computing 20.4 (2009). Spe-
cial Issue on Best Papers from VL/HCC2008, pp. 223–235. ISSN: 1045-926X.
DOI: https://doi.org/10.1016/j.jvlc.2009.04.003. URL: https://www.
sciencedirect.com/science/article/pii/S1045926X09000263.

[84] Daniel Gonçalves and Joaquim A. Jorge. “Describing documents: what can
users tell us?” In: Proceedings of the 9th International Conference on Intelligent
User Interfaces. IUI ’04. Funchal, Madeira, Portugal: Association for Com-
puting Machinery, 2004, 247–249. ISBN: 1581138156. DOI: 10.1145/964442.
964494. URL: https://doi.org/10.1145/964442.964494.

[85] Wayne D Gray and Deborah A Boehm-Davis. “Milliseconds matter: An in-
troduction to microstrategies and to their use in describing and predicting
interactive behavior.” In: Journal of experimental psychology: applied 6.4 (2000),
p. 322.

[86] Wayne D. Gray and Wai-Tat Fu. “Ignoring perfect knowledge in-the-world
for imperfect knowledge in-the-head”. In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems. CHI ’01. Seattle, Washington,
USA: Association for Computing Machinery, 2001, 112–119. ISBN: 1581133278.
DOI: 10.1145/365024.365061. URL: https://doi.org/10.1145/365024.
365061.

[87] Sanuri Dananja Gunawardena, Peter Devine, Isabelle Beaumont, Lola Piper
Garden, Emerson Murphy-Hill, and Kelly Blincoe. “Destructive Criticism in
Software Code Review Impacts Inclusion”. In: Proc. ACM Hum.-Comput. In-
teract. 6.CSCW2 (2022). DOI: 10.1145/3555183. URL: https://doi.org/10.
1145/3555183.

https://doi.org/10.1145/1806799.1806856
https://doi.org/10.1145/1806799.1806856
https://doi.org/10.1145/1806799.1806856
https://doi.org/10.1109/ICSE.2004.1317461
https://doi.org/10.1109/ICSE.2004.1317461
https://arxiv.org/abs/2110.12489
https://arxiv.org/abs/2110.12489
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/https://doi.org/10.1016/j.jvlc.2009.04.003
https://www.sciencedirect.com/science/article/pii/S1045926X09000263
https://www.sciencedirect.com/science/article/pii/S1045926X09000263
https://doi.org/10.1145/964442.964494
https://doi.org/10.1145/964442.964494
https://doi.org/10.1145/964442.964494
https://doi.org/10.1145/365024.365061
https://doi.org/10.1145/365024.365061
https://doi.org/10.1145/365024.365061
https://doi.org/10.1145/3555183
https://doi.org/10.1145/3555183
https://doi.org/10.1145/3555183

Bibliography 227

[88] Mark Guzdial and Jennifer Turns. “Effective Discussion Through a Computer
Mediated Anchored Forum”. In: The Journal of the Learning Sciences 9 (4 2000),
pp. 437–469. DOI: 10.1207/S15327809JLS0904_3. URL: https://doi.org/
10.1207/S15327809JLS0904_3.

[89] Anja Guzzi, Lile Hattori, Michele Lanza, Martin Pinzger, and Arie van Deursen.
“Collective Code Bookmarks for Program Comprehension”. In: 2011 IEEE
19th International Conference on Program Comprehension. 2011, pp. 101–110. DOI:
10.1109/ICPC.2011.19.

[90] Anja Guzzi, Martin Pinzger, and Arie van Deursen. “Combining micro-blogging
and IDE interactions to support developers in their quests”. In: 2010 IEEE In-
ternational Conference on Software Maintenance. 2010, pp. 1–5. DOI: 10.1109/
ICSM.2010.5609683.

[91] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. “On the
use of automated text summarization techniques for summarizing source
code”. In: 2010 17th Working Conference on Reverse Engineering. IEEE. 2010,
pp. 35–44.

[92] Björn Hartmann, Mark Dhillon, and Matthew K. Chan. “HyperSource: Bridg-
ing the Gap between Source and Code-Related Web Sites”. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. CHI ’11. Van-
couver, BC, Canada: Association for Computing Machinery, 2011, 2207–2210.
ISBN: 9781450302289. DOI: 10.1145/1978942.1979263. URL: https://doi.
org/10.1145/1978942.1979263.

[93] Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, and Takashi Ishio.
“9.6 Million Links in Source Code Comments: Purpose, Evolution, and De-
cay”. In: 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). 2019, pp. 1211–1221. DOI: 10.1109/ICSE.2019.00123.

[94] Andrew Head, Elena L. Glassman, Björn Hartmann, and Marti A. Hearst. “In-
teractive Extraction of Examples from Existing Code”. In: Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. CHI ’18. Mon-
treal QC, Canada: Association for Computing Machinery, 2018, 1–12. ISBN:
9781450356206. DOI: 10.1145/3173574.3173659. URL: https://doi.org/10.
1145/3173574.3173659.

[95] Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert De-
Line. “Managing Messes in Computational Notebooks”. In: Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. CHI ’19. Glas-
gow, Scotland Uk: Association for Computing Machinery, 2019, 1–12. ISBN:
9781450359702. DOI: 10.1145/3290605.3300500. URL: https://doi.org/10.
1145/3290605.3300500.

https://doi.org/10.1207/S15327809JLS0904_3
https://doi.org/10.1207/S15327809JLS0904_3
https://doi.org/10.1207/S15327809JLS0904_3
https://doi.org/10.1109/ICPC.2011.19
https://doi.org/10.1109/ICSM.2010.5609683
https://doi.org/10.1109/ICSM.2010.5609683
https://doi.org/10.1145/1978942.1979263
https://doi.org/10.1145/1978942.1979263
https://doi.org/10.1145/1978942.1979263
https://doi.org/10.1109/ICSE.2019.00123
https://doi.org/10.1145/3173574.3173659
https://doi.org/10.1145/3173574.3173659
https://doi.org/10.1145/3173574.3173659
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3290605.3300500

228 Bibliography

[96] Andrew Head, Jason Jiang, James Smith, Marti A. Hearst, and Björn Hart-
mann. “Composing Flexibly-Organized Step-by-Step Tutorials from Linked
Source Code, Snippets, and Outputs”. In: Proceedings of the 2020 CHI Confer-
ence on Human Factors in Computing Systems. CHI ’20. Honolulu, HI, USA:
Association for Computing Machinery, 2020, 1–12. ISBN: 9781450367080. DOI:
10.1145/3313831.3376798. URL: https://doi.org/10.1145/3313831.
3376798.

[97] Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, and Andrea Knight.
“When Not to Comment: Questions and Tradeoffs with API Documentation
for C++ Projects”. In: Proceedings of the 40th International Conference on Software
Engineering. ICSE ’18. Gothenburg, Sweden: Association for Computing Ma-
chinery, 2018, 643–653. ISBN: 9781450356381. DOI: 10.1145/3180155.3180176.
URL: https://doi.org/10.1145/3180155.3180176.

[98] Marti A. Hearst. “What’s Missing from Collaborative Search?” In: Computer
47.3 (2014), pp. 58–61. DOI: 10.1109/MC.2014.77.

[99] Ken Hinckley, Xiaojun Bi, Michel Pahud, and Bill Buxton. “Informal Informa-
tion Gathering Techniques for Active Reading”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’12. Austin, Texas,
USA: Association for Computing Machinery, 2012, 1893–1896. ISBN: 9781450310154.
DOI: 10.1145/2207676.2208327. URL: https://doi.org/10.1145/2207676.
2208327.

[100] Reid Holmes and Andrew Begel. “Deep intellisense: a tool for rehydrating
evaporated information”. In: Proceedings of the 2008 international working con-
ference on Mining software repositories. 2008, pp. 23–26.

[101] Reid Holmes and Andrew Begel. “Deep Intellisense: A Tool for Rehydrat-
ing Evaporated Information”. In: Proceedings of the 2008 International Working
Conference on Mining Software Repositories. MSR ’08. Leipzig, Germany: Asso-
ciation for Computing Machinery, 2008, 23–26. ISBN: 9781605580241. DOI: 10.
1145/1370750.1370755. URL: https://doi.org/10.1145/1370750.1370755.

[102] Lichan Hong and Ed H Chi. “Annotate once, appear anywhere: collective for-
aging for snippets of interest using paragraph fingerprinting”. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. New York,
NY, USA: ACM, 2009, pp. 1791–1794.

[103] Amber Horvath, Sachin Grover, Sihan Dong, Emily Zhou, Finn Voichick,
Mary Beth Kery, Shwetha Shinju, Daye Nam, Mariann Nagy, and Brad My-
ers. “The Long Tail: Understanding the Discoverability of API Functional-
ity”. In: VLHCC 2019. New York, NY, USA: IEEE, 2019, pp. 157–161. DOI:
10.1109/VLHCC.2019.8818681. URL: https://doi.org/10.1109/VLHCC.
2019.8818681.

https://doi.org/10.1145/3313831.3376798
https://doi.org/10.1145/3313831.3376798
https://doi.org/10.1145/3313831.3376798
https://doi.org/10.1145/3180155.3180176
https://doi.org/10.1145/3180155.3180176
https://doi.org/10.1109/MC.2014.77
https://doi.org/10.1145/2207676.2208327
https://doi.org/10.1145/2207676.2208327
https://doi.org/10.1145/2207676.2208327
https://doi.org/10.1145/1370750.1370755
https://doi.org/10.1145/1370750.1370755
https://doi.org/10.1145/1370750.1370755
https://doi.org/10.1109/VLHCC.2019.8818681
https://doi.org/10.1109/VLHCC.2019.8818681
https://doi.org/10.1109/VLHCC.2019.8818681

Bibliography 229

[104] Amber Horvath, Michael Xieyang Liu, River Hendriksen, Connor Shannon,
Emma Paterson, Kazi Jawad, Andrew Macvean, and Brad A. Myers. “Un-
derstanding How Programmers Can Use Annotations on Documentation”.
In: Proceedings of the 2022 CHI Conference on Human Factors in Computing Sys-
tems. CHI ’22. New Orleans, LA, USA: Association for Computing Machin-
ery, 2022. DOI: 10.1145/3491102.3502095. URL: https://doi.org/10.1145/
3491102.3502095.

[105] Amber Horvath, Andrew Macvean, and Brad A. Myers. “Meta-Manager: A
Tool for Collecting and Exploring Meta Information about Code”. In: Proceed-
ings of the CHI Conference on Human Factors in Computing Systems (CHI ’24),
May 11–16, 2024, Honolulu, HI, USA. CHI ’24. Honolulu, HI, USA: Associa-
tion for Computing Machinery, 2024. DOI: 10.1145/3613904.3642676. URL:
https://doi.org/10.1145/3613904.3642676.

[106] Amber Horvath, Andrew Macvean, and Brad A. Myers. “Support for Long-
Form Documentation Authoring and Maintenance”. In: VL/HCC 2023. 2023.

[107] Amber Horvath, Brad Myers, Andrew Macvean, and Imtiaz Rahman. “Using
Annotations for Sensemaking About Code”. In: Proceedings of the 35th Annual
ACM Symposium on User Interface Software and Technology. UIST ’22. Bend, OR,
USA: Association for Computing Machinery, 2022. ISBN: 9781450393201. DOI:
10.1145/3526113.3545667. URL: https://doi.org/10.1145/3526113.
3545667.

[108] Amber Horvath, Mariann Nagy, Finn Voichick, Mary Beth Kery, and Brad A
Myers. “Methods for investigating mental models for learners of APIs”. In:
CHI LBW ’19. New York, NY, USA: ACM, 2019, pp. 1–6.

[109] Daqing Hou, Patricia Jablonski, and Ferosh Jacob. “CnP: Towards an envi-
ronment for the proactive management of copy-and-paste programming”.
In: 2009 IEEE 17th International Conference on Program Comprehension. 2009,
pp. 238–242. DOI: 10.1109/ICPC.2009.5090049.

[110] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. “API
Method Recommendation without Worrying about the Task-API Knowledge
Gap”. In: Proceedings of the 33rd ACM/IEEE International Conference on Au-
tomated Software Engineering. ASE ’18. Montpellier, France: Association for
Computing Machinery, 2018, 293–304. ISBN: 9781450359375. DOI: 10.1145/
3238147.3238191. URL: https://doi.org/10.1145/3238147.3238191.

[111] Hypothes.is. Hypothes.is: Annotate the web, with anyone, anywhere. Hypothes.is.
2012. URL: https://web.hypothes.is/.

[112] Peiling Jiang, Fuling Sun, and Haijun Xia. “Log-It: Supporting Programming
with Interactive, Contextual, Structured, and Visual Logs”. In: Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems. CHI ’23.
Hamburg, Germany: Association for Computing Machinery, 2023. ISBN: 9781450394215.

https://doi.org/10.1145/3491102.3502095
https://doi.org/10.1145/3491102.3502095
https://doi.org/10.1145/3491102.3502095
https://doi.org/10.1145/3613904.3642676
https://doi.org/10.1145/3613904.3642676
https://doi.org/10.1145/3526113.3545667
https://doi.org/10.1145/3526113.3545667
https://doi.org/10.1145/3526113.3545667
https://doi.org/10.1109/ICPC.2009.5090049
https://doi.org/10.1145/3238147.3238191
https://doi.org/10.1145/3238147.3238191
https://doi.org/10.1145/3238147.3238191
https://web.hypothes.is/

230 Bibliography

DOI: 10.1145/3544548.3581403. URL: https://doi.org/10.1145/3544548.
3581403.

[113] An Ju, Hitesh Sajnani, Scot Kelly, and Kim Herzig. “A case study of onboard-
ing in software teams: Tasks and strategies”. In: 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering (ICSE). IEEE. 2021, pp. 613–623.

[114] Ján Juhár. “Supporting Source Code Annotations with Metadata-Aware De-
velopment Environment”. In: 2019 Federated Conference on Computer Science
and Information Systems (FedCSIS). 2019, pp. 411–420. DOI: 10.15439/2019F161.

[115] Md Mahir Asef Kabir, Sk Adnan Hassan, Xiaoyin Wang, Ying Wang, Hai Yu,
and Na Meng. An empirical study of ChatGPT-3.5 on question answering and
code maintenance. 2023. arXiv: 2310.02104 [cs.SE]. URL: https://arxiv.
org/abs/2310.02104.

[116] Vaiva Kalnikaité and Steve Whittaker. “Software or wetware? discovering
when and why people use digital prosthetic memory”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. CHI ’07. San Jose,
California, USA: Association for Computing Machinery, 2007, 71–80. ISBN:
9781595935939. DOI: 10.1145/1240624.1240635. URL: https://doi.org/10.
1145/1240624.1240635.

[117] David R. Karger and Dennis Quan. “Haystack: a user interface for creating,
browsing, and organizing arbitrary semistructured information”. In: CHI ’04
Extended Abstracts on Human Factors in Computing Systems. CHI EA ’04. Vi-
enna, Austria: Association for Computing Machinery, 2004, 777–778. ISBN:
1581137036. DOI: 10.1145/985921.985931. URL: https://doi.org/10.1145/
985921.985931.

[118] Mik Kersten and Gail C. Murphy. “Mylar: A Degree-of-Interest Model for
IDEs”. In: Proceedings of the 4th International Conference on Aspect-Oriented Soft-
ware Development. AOSD ’05. Chicago, Illinois: Association for Computing
Machinery, 2005, 159–168. ISBN: 1595930426. DOI: 10.1145/1052898.1052912.
URL: https://doi.org/10.1145/1052898.1052912.

[119] Mary Beth Kery, Amber Horvath, and Brad Myers. “Variolite: Supporting
Exploratory Programming by Data Scientists”. In: Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. CHI ’17. Denver, Colorado,
USA: Association for Computing Machinery, 2017, 1265–1276. ISBN: 9781450346559.
DOI: 10.1145/3025453.3025626. URL: https://doi.org/10.1145/3025453.
3025626.

[120] Mary Beth Kery, Bonnie E. John, Patrick O’Flaherty, Amber Horvath, and
Brad A. Myers. “Towards Effective Foraging by Data Scientists to Find Past
Analysis Choices”. In: Proceedings of the 2019 CHI Conference on Human Factors

https://doi.org/10.1145/3544548.3581403
https://doi.org/10.1145/3544548.3581403
https://doi.org/10.1145/3544548.3581403
https://doi.org/10.15439/2019F161
https://arxiv.org/abs/2310.02104
https://arxiv.org/abs/2310.02104
https://arxiv.org/abs/2310.02104
https://doi.org/10.1145/1240624.1240635
https://doi.org/10.1145/1240624.1240635
https://doi.org/10.1145/1240624.1240635
https://doi.org/10.1145/985921.985931
https://doi.org/10.1145/985921.985931
https://doi.org/10.1145/985921.985931
https://doi.org/10.1145/1052898.1052912
https://doi.org/10.1145/1052898.1052912
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/3025453.3025626

Bibliography 231

in Computing Systems. CHI ’19. Glasgow, Scotland Uk: Association for Com-
puting Machinery, 2019, 1–13. ISBN: 9781450359702. DOI: 10.1145/3290605.
3300322. URL: https://doi.org/10.1145/3290605.3300322.

[121] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad
A. Myers. “The Story in the Notebook: Exploratory Data Science Using a Lit-
erate Programming Tool”. In: Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. CHI ’18. Montreal QC, Canada: Association
for Computing Machinery, 2018, 1–11. ISBN: 9781450356206. DOI: 10.1145/
3173574.3173748. URL: https://doi.org/10.1145/3173574.3173748.

[122] Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes de
Oliveira Neto. Beyond Code Generation: An Observational Study of ChatGPT Us-
age in Software Engineering Practice. 2024. arXiv: 2404.14901 [cs.SE]. URL:
https://arxiv.org/abs/2404.14901.

[123] Raphaël Khoury, Anderson R Avila, Jacob Brunelle, and Baba Mamadou Ca-
mara. “How Secure is Code Generated by ChatGPT?” In: arXiv preprint arXiv:2304.09655
(2023).

[124] Aniket Kittur, Andrew M. Peters, Abdigani Diriye, Trupti Telang, and Michael
R. Bove. “Costs and benefits of structured information foraging”. In: CHI
2013. New York, NY, USA: ACM, 2013, pp. 2989–2998.

[125] D. E. Knuth. “Literate Programming”. In: The Computer Journal 27.2 (Jan. 1984),
pp. 97–111. ISSN: 0010-4620. DOI: 10.1093/comjnl/27.2.97. eprint: https:
//academic.oup.com/comjnl/article-pdf/27/2/97/981657/270097.pdf.
URL: https://doi.org/10.1093/comjnl/27.2.97.

[126] Amy J. Ko, Htet Aung, and Brad A. Myers. “Eliciting Design Requirements
for Maintenance-Oriented IDEs: A Detailed Study of Corrective and Perfec-
tive Maintenance Tasks”. In: Proceedings of the 27th International Conference on
Software Engineering. ICSE ’05. St. Louis, MO, USA: Association for Comput-
ing Machinery, 2005, 126–135. ISBN: 1581139632. DOI: 10 . 1145 / 1062455 .
1062492. URL: https://doi.org/10.1145/1062455.1062492.

[127] Amy J Ko, Robert DeLine, and Gina Venolia. “Information needs in collocated
software development teams”. In: 29th International Conference on Software En-
gineering (ICSE’07). IEEE. 2007, pp. 344–353.

[128] Amy J Ko, Thomas D LaToza, and Margaret M Burnett. “A practical guide
to controlled experiments of software engineering tools with human partici-
pants”. In: Empirical Software Engineering 20.1 (2015), pp. 110–141.

[129] Amy J. Ko and Brad A. Myers. “Debugging Reinvented: Asking and Answer-
ing Why and Why Not Questions about Program Behavior”. In: Proceedings
of the 30th International Conference on Software Engineering. ICSE ’08. Leipzig,
Germany: Association for Computing Machinery, 2008, 301–310. ISBN: 9781605580791.

https://doi.org/10.1145/3290605.3300322
https://doi.org/10.1145/3290605.3300322
https://doi.org/10.1145/3290605.3300322
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/3173574.3173748
https://arxiv.org/abs/2404.14901
https://arxiv.org/abs/2404.14901
https://doi.org/10.1093/comjnl/27.2.97
https://academic.oup.com/comjnl/article-pdf/27/2/97/981657/270097.pdf
https://academic.oup.com/comjnl/article-pdf/27/2/97/981657/270097.pdf
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1145/1062455.1062492
https://doi.org/10.1145/1062455.1062492
https://doi.org/10.1145/1062455.1062492

232 Bibliography

DOI: 10.1145/1368088.1368130. URL: https://doi.org/10.1145/1368088.
1368130.

[130] Amy J. Ko and Brad A. Myers. “Designing the Whyline: A Debugging In-
terface for Asking Questions about Program Behavior”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. CHI ’04. Vienna,
Austria: Association for Computing Machinery, 2004, 151–158. ISBN: 1581137028.
DOI: 10.1145/985692.985712. URL: https://doi.org/10.1145/985692.
985712.

[131] Amy J. Ko and Brad A. Myers. “Finding Causes of Program Output with the
Java Whyline”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI ’09. Boston, MA, USA: Association for Computing
Machinery, 2009, 1569–1578. ISBN: 9781605582467. DOI: 10.1145/1518701.
1518942. URL: https://doi.org/10.1145/1518701.1518942.

[132] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. “An Ex-
ploratory Study of How Developers Seek, Relate, and Collect Relevant Infor-
mation during Software Maintenance Tasks”. In: IEEE Transactions on Software
Engineering 32.12 (2006), pp. 971–987. DOI: 10.1109/TSE.2006.116.

[133] Amy J. Ko and Yann Riche. “The role of conceptual knowledge in API usabil-
ity”. In: 2011 IEEE Symposium on Visual Languages and Human-Centric Comput-
ing (VL/HCC). 2011, pp. 173–176. DOI: 10.1109/VLHCC.2011.6070395.

[134] Amy J. Ko and Bob Uttl. “Individual differences in program comprehension
strategies in unfamiliar programming systems”. In: 11th Annual Workshop on
Program Comprehension. New York, NY, USA: IEEE, 2003, pp. 175–184. DOI:
10.1109/WPC.2003.1199201. URL: https://doi.org/10.1109/WPC.2003.
1199201.

[135] Oleksii Kononenko, Olga Baysal, and Michael W. Godfrey. “Code Review
Quality: How Developers See It”. In: Proceedings of the 38th International Con-
ference on Software Engineering. ICSE ’16. Austin, Texas: Association for Com-
puting Machinery, 2016, 1028–1038. ISBN: 9781450339001. DOI: 10.1145/2884781.
2884840. URL: https://doi.org/10.1145/2884781.2884840.

[136] Mik Lamming, Peter Brown, Kathleen Carter, Margery Eldridge, Mike Flynn,
Gifford Louie, Peter Robinson, and Abigail Sellen. “The design of a human
memory prosthesis”. In: The Computer Journal 37.3 (1994), pp. 153–163.

[137] Mark W Lansdale. “The psychology of personal information management”.
In: Applied ergonomics 19.1 (1988), pp. 55–66.

[138] Thomas D. LaToza, David Garlan, James D. Herbsleb, and Brad A. Myers.
“Program comprehension as fact finding”. In: ESEC-FSE 2007. New York, NY,
USA: ACM, 2007, pp. 361–270.

https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1145/985692.985712
https://doi.org/10.1145/985692.985712
https://doi.org/10.1145/985692.985712
https://doi.org/10.1145/1518701.1518942
https://doi.org/10.1145/1518701.1518942
https://doi.org/10.1145/1518701.1518942
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1109/VLHCC.2011.6070395
https://doi.org/10.1109/WPC.2003.1199201
https://doi.org/10.1109/WPC.2003.1199201
https://doi.org/10.1109/WPC.2003.1199201
https://doi.org/10.1145/2884781.2884840
https://doi.org/10.1145/2884781.2884840
https://doi.org/10.1145/2884781.2884840

Bibliography 233

[139] Thomas D. LaToza and Brad A. Myers. “Hard-to-Answer Questions about
Code”. In: Evaluation and Usability of Programming Languages and Tools. PLATEAU
’10. Reno, Nevada: Association for Computing Machinery, 2010. ISBN: 9781450305471.
DOI: 10.1145/1937117.1937125. URL: https://doi.org/10.1145/1937117.
1937125.

[140] Thomas D. LaToza, Gina Venolia, and Robert DeLine. “Maintaining mental
models: a study of developer work habits”. In: Proceedings of the 28th Inter-
national Conference on Software Engineering. ICSE ’06. Shanghai, China: Asso-
ciation for Computing Machinery, 2006, 492–501. ISBN: 1595933751. DOI: 10.
1145/1134285.1134355. URL: https://doi.org/10.1145/1134285.1134355.

[141] Tom Lauwaerts, Carlos Rojas Castillo, Robbert Gurdeep Singh, Matteo Marra,
Christophe Scholliers, and Elisa Gonzalez Boix. “Event-Based Out-of-Place
Debugging”. In: Proceedings of the 19th International Conference on Managed Pro-
gramming Languages and Runtimes. MPLR ’22. Brussels, Belgium: Association
for Computing Machinery, 2022, 85–97. ISBN: 9781450396967. DOI: 10.1145/
3546918.3546920. URL: https://doi.org/10.1145/3546918.3546920.

[142] Joseph Lawrance, Christopher Bogart, Margaret Burnett, Rachel Bellamy, Kyle
Rector, and Scott D. Fleming. “How Programmers Debug, Revisited: An In-
formation Foraging Theory Perspective”. In: IEEE Transactions on Software En-
gineering 39.2 (2013), pp. 197–215. DOI: 10.1109/TSE.2010.111.

[143] Timothy C. Lethbirdge, Janice Singer, and Andrew Forward. “How software
engineers use documentation: the state of the practice”. In: IEEE Software 20
(6 Nov. 2003), pp. 35–39. DOI: 10.1109/MS.2003.1241364. URL: https://doi.
org/10.1109/MS.2003.1241364.

[144] Heng Li, Weiyi Shang, Bram Adams, Mohammed Sayagh, and Ahmed E.
Hassan. “A Qualitative Study of the Benefits and Costs of Logging From De-
velopers’ Perspectives”. In: IEEE Transactions on Software Engineering 47.12
(2021), pp. 2858–2873. DOI: 10.1109/TSE.2020.2970422.

[145] Hongwei Li, Zhenchang Xing, Xin Peng, and Wenyun Zhao. “What help do
developers seek, when and how?” In: 2013 20th Working Conference on Reverse
Engineering (WCRE). 2013, pp. 142–151. DOI: 10.1109/WCRE.2013.6671289.

[146] Xiangqi Li and Matthew Flatt. “Medic: metaprogramming and trace-oriented
debugging”. In: Proceedings of the Workshop on Future Programming. FPW 2015.
Pittsburgh, PA, USA: Association for Computing Machinery, 2015, 7–14. ISBN:
9781450339056. DOI: 10.1145/2846656.2846658. URL: https://doi.org/10.
1145/2846656.2846658.

[147] Jenny T. Liang, Maryam Arab, Minhyuk Ko, Amy J. Ko, and Thomas D. La-
Toza. “A Qualitative Study on the Implementation Design Decisions of De-
velopers”. In: Proceedings of the 45th International Conference on Software Engi-
neering. ICSE ’23. Melbourne, Victoria, Australia: IEEE Press, 2023, 435–447.

https://doi.org/10.1145/1937117.1937125
https://doi.org/10.1145/1937117.1937125
https://doi.org/10.1145/1937117.1937125
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1145/3546918.3546920
https://doi.org/10.1145/3546918.3546920
https://doi.org/10.1145/3546918.3546920
https://doi.org/10.1109/TSE.2010.111
https://doi.org/10.1109/MS.2003.1241364
https://doi.org/10.1109/MS.2003.1241364
https://doi.org/10.1109/MS.2003.1241364
https://doi.org/10.1109/TSE.2020.2970422
https://doi.org/10.1109/WCRE.2013.6671289
https://doi.org/10.1145/2846656.2846658
https://doi.org/10.1145/2846656.2846658
https://doi.org/10.1145/2846656.2846658

234 Bibliography

ISBN: 9781665457019. DOI: 10.1109/ICSE48619.2023.00047. URL: https:
//doi.org/10.1109/ICSE48619.2023.00047.

[148] Jenny T. Liang, Chenyang Yang, and Brad A. Myers. “A Large-Scale Survey
on the Usability of AI Programming Assistants: Successes and Challenges”.
In: Proceedings of the 46th International Conference on Software Engineering. ICSE
’24. To appear. Lisbon, Portugal, 2024. URL: arXiv:2303.17125.

[149] Mario Linares-Vásquez, Luis Fernando Cortés-Coy, Jairo Aponte, and Denys
Poshyvanyk. “ChangeScribe: A Tool for Automatically Generating Commit
Messages”. In: 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering. Vol. 2. 2015, pp. 709–712. DOI: 10.1109/ICSE.2015.229.

[150] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. “Is your
code generated by chatgpt really correct? rigorous evaluation of large lan-
guage models for code generation”. In: arXiv preprint arXiv:2305.01210 (2023).

[151] Michael Xieyang Liu, Jane Hsieh, Nathan Hahn, Angelina Zhou, Emily Deng,
Shaun Burley, Cynthia Taylor, Aniket Kittur, and Brad A. Myers. “Unakite:
Scaffolding Developers’ Decision-Making Using the Web”. In: UIST 2019.
New York, NY, USA: ACM, 2019, pp. 67–80.

[152] Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers. “Crystalline: Lower-
ing the Cost for Developers to Collect and Organize Information for Decision
Making”. In: Proceedings of the 2022 CHI Conference on Human Factors in Com-
puting Systems. CHI ’22. New Orleans, LA, USA: Association for Computing
Machinery, 2022. DOI: 10.1145/3491102.3501968. URL: https://doi.org/
10.1145/3491102.3501968.

[153] Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers. “To Reuse or Not
To Reuse? A Framework and System for Evaluating Summarized Knowl-
edge”. In: Proc. ACM Hum.-Comput. Interact. 5.CSCW1 (2021). DOI: 10.1145/
3449240. URL: https://doi.org/10.1145/3449240.

[154] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. “Au-
tomatic generation of pull request descriptions”. In: 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE. 2019,
pp. 176–188.

[155] Steven Locke, Heng Li, Tse-Hsun Peter Chen, Weiyi Shang, and Wei Liu.
“LogAssist: Assisting Log Analysis Through Log Summarization”. In: IEEE
Transactions on Software Engineering 48.9 (2022), pp. 3227–3241. DOI: 10.1109/
TSE.2021.3083715.

[156] Yimeng Ma, Yu Huang, and Kevin Leach. “Breaking the Flow: A Study of
Interruptions During Software Engineering Activities”. In: Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering. ICSE ’24. Lis-
bon, Portugal: Association for Computing Machinery, 2024. ISBN: 9798400702174.

https://doi.org/10.1109/ICSE48619.2023.00047
https://doi.org/10.1109/ICSE48619.2023.00047
https://doi.org/10.1109/ICSE48619.2023.00047
arXiv:2303.17125
https://doi.org/10.1109/ICSE.2015.229
https://doi.org/10.1145/3491102.3501968
https://doi.org/10.1145/3491102.3501968
https://doi.org/10.1145/3491102.3501968
https://doi.org/10.1145/3449240
https://doi.org/10.1145/3449240
https://doi.org/10.1145/3449240
https://doi.org/10.1109/TSE.2021.3083715
https://doi.org/10.1109/TSE.2021.3083715

Bibliography 235

DOI: 10.1145/3597503.3639079. URL: https://doi.org/10.1145/3597503.
3639079.

[157] Walid Maalej and Hans-Jorg Happel. “From work to word: How do software
developers describe their work?” In: 2009 6th IEEE International Working Con-
ference on Mining Software Repositories. 2009, pp. 121–130. DOI: 10.1109/MSR.
2009.5069490.

[158] Walid Maalej and Martin P. Robillard. “Patterns of Knowledge in API Ref-
erence Documentation”. In: IEEE Transactions on Software Engineering 39.9
(2013), pp. 1264–1282. DOI: 10.1109/TSE.2013.12.

[159] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. “On the
Comprehension of Program Comprehension”. In: Transactions on Software En-
gineering 23 (4 2014), pp. 1–37. DOI: 10.1145/2622669. URL: https://doi.
org/10.1145/2622669.

[160] Catherine C. Marshall and Sara Bly. “Saving and Using Encountered Infor-
mation: Implications for Electronic Periodicals”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’05. Portland, Oregon,
USA: Association for Computing Machinery, 2005, 111–120. ISBN: 1581139985.
DOI: 10.1145/1054972.1054989. URL: https://doi.org/10.1145/1054972.
1054989.

[161] Anneliese von Mayrhauser and A Marie Vans. “Hypothesis-driven under-
standing processes during corrective maintenance of large scale software”.
In: 1997 Proceedings International Conference on Software Maintenance. IEEE.
1997, pp. 12–20.

[162] Collin McMillan, Denys Poshyvanyk, and Mark Grechanik. “Recommending
Source Code Examples via API Call Usages and Documentation”. In: Proceed-
ings of the 2nd International Workshop on Recommendation Systems for Software
Engineering. RSSE ’10. Cape Town, South Africa: Association for Comput-
ing Machinery, 2010, 21–25. ISBN: 9781605589749. DOI: 10.1145/1808920.
1808925. URL: https://doi.org/10.1145/1808920.1808925.

[163] Michael Meng, Stephanie M Steinhard, and Andreas Schubert. “How devel-
opers use API documentation: an observation study”. In: Communication De-
sign Quarterly 7 (2 2019), pp. 40–49. DOI: 10.1145/3358931.3358937. URL:
https://doi.org/10.1145/3358931.3358937.

[164] Michael Meng, Stephanie Steinhardt, and Andreas Schubert. “How develop-
ers use API documentation: an observation study”. In: Commun. Des. Q. Rev
7.2 (2019), 40–49. DOI: 10.1145/3358931.3358937. URL: https://doi.org/
10.1145/3358931.3358937.

[165] Microsoft. TypeScript: JavaScript with Syntax for Types. Microsoft. 2023. URL:
https://www.typescriptlang.org/.

https://doi.org/10.1145/3597503.3639079
https://doi.org/10.1145/3597503.3639079
https://doi.org/10.1145/3597503.3639079
https://doi.org/10.1109/MSR.2009.5069490
https://doi.org/10.1109/MSR.2009.5069490
https://doi.org/10.1109/TSE.2013.12
https://doi.org/10.1145/2622669
https://doi.org/10.1145/2622669
https://doi.org/10.1145/2622669
https://doi.org/10.1145/1054972.1054989
https://doi.org/10.1145/1054972.1054989
https://doi.org/10.1145/1054972.1054989
https://doi.org/10.1145/1808920.1808925
https://doi.org/10.1145/1808920.1808925
https://doi.org/10.1145/1808920.1808925
https://doi.org/10.1145/3358931.3358937
https://doi.org/10.1145/3358931.3358937
https://doi.org/10.1145/3358931.3358937
https://doi.org/10.1145/3358931.3358937
https://doi.org/10.1145/3358931.3358937
https://www.typescriptlang.org/

236 Bibliography

[166] Microsoft. Visual Studio Code. Microsoft. 2023. URL: https://code.visualstudio.
com/.

[167] Microsoft. Webview API | Visual Studio Code Extension API. Microsoft. 2023.
URL: https://code.visualstudio.com/api/extension-guides/webview.

[168] Edward Misback, Zachary Tatlock, and Steven L Tanimoto. “Magic Markup:
Maintaining Document-External Markup with an LLM”. In: arXiv preprint
arXiv:2403.03481 (2024).

[169] Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. “Read-
ing Between the Lines: Modeling User Behavior and Costs in AI-Assisted
Programming”. In: Proceedings of the CHI Conference on Human Factors in Com-
puting Systems. CHI ’24. Honolulu, HI, USA: Association for Computing Ma-
chinery, 2024. ISBN: 9798400703300. DOI: 10.1145/3613904.3641936. URL:
https://doi.org/10.1145/3613904.3641936.

[170] Gail C Murphy, Mik Kersten, Martin P Robillard, and Davor Čubranić. “The
emergent structure of development tasks”. In: European Conference on Object-
Oriented Programming. Springer. 2005, pp. 33–48.

[171] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. “Debugging: the good, the bad, and the quirky –
a qualitative analysis of novices’ strategies”. In: Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education. SIGCSE ’08. Portland, OR,
USA: Association for Computing Machinery, 2008, 163–167. ISBN: 9781595937995.
DOI: 10.1145/1352135.1352191. URL: https://doi.org/10.1145/1352135.
1352191.

[172] Emerson Murphy-Hill, Jillian Dicker, Margaret Morrow Hodges, Carolyn D.
Egelman, Ciera Jaspan, Lan Cheng, Elizabeth Kammer, Ben Holtz, Matthew
A. Jorde, Andrea Knight Dolan, and Collin Green. “Engineering Impacts of
Anonymous Author Code Review: A Field Experiment”. In: IEEE Transac-
tions on Software Engineering 48.7 (2022), pp. 2495–2509. DOI: 10.1109/TSE.
2021.3061527.

[173] Emerson Murphy-Hill, Ciera Jaspan, Carolyn Egelman, and Lan Cheng. “The
Pushback Effects of Race, Ethnicity, Gender, and Age in Code Review”. In:
Commun. ACM 65.3 (2022), 52–57. ISSN: 0001-0782. DOI: 10.1145/3474097.
URL: https://doi.org/10.1145/3474097.

[174] Brad A. Myers and Jeffrey Stylos. “Improving API Usability”. In: Communi-
cations of the ACM 59.6 (2016), pp. 62–69. DOI: 10.1145/2896587. URL: https:
//doi.org/10.1145/2896587.

[175] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and
Brad Myers. “Using an LLM to Help With Code Understanding”. In: Pro-
ceedings of the IEEE/ACM 46th International Conference on Software Engineering.
ICSE ’24. Lisbon, Portugal: Association for Computing Machinery, 2024. ISBN:

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/api/extension-guides/webview
https://doi.org/10.1145/3613904.3641936
https://doi.org/10.1145/3613904.3641936
https://doi.org/10.1145/1352135.1352191
https://doi.org/10.1145/1352135.1352191
https://doi.org/10.1145/1352135.1352191
https://doi.org/10.1109/TSE.2021.3061527
https://doi.org/10.1109/TSE.2021.3061527
https://doi.org/10.1145/3474097
https://doi.org/10.1145/3474097
https://doi.org/10.1145/2896587
https://doi.org/10.1145/2896587
https://doi.org/10.1145/2896587

Bibliography 237

9798400702174. DOI: 10.1145/3597503.3639187. URL: https://doi.org/10.
1145/3597503.3639187.

[176] Daye Nam, Brad Myers, Bogdan Vasilescu, and Vincent Hellendoorn. “Im-
proving API Knowledge Discovery with ML: A Case Study of Comparable
API Methods”. In: 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). 2023, pp. 1890–1906. DOI: 10.1109/ICSE48619.2023.
00161.

[177] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. “What
makes a good code example?: A study of programming Q&A in StackOver-
flow”. In: ICSM 2012. New York, NY, USA: IEEE, 2012, pp. 25–34.

[178] Mathieu Nassif and Martin P. Robillard. “Revisiting Turnover-Induced Knowl-
edge Loss in Software Projects”. In: 2017 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME). 2017, pp. 261–272. DOI: 10.1109/
ICSME.2017.64.

[179] Sydney Nguyen, Hannah McLean Babe, Yangtian Zi, Arjun Guha, Carolyn
Jane Anderson, and Molly Q Feldman. “How Beginning Programmers and
Code LLMs (Mis)read Each Other”. In: Proceedings of the CHI Conference on
Human Factors in Computing Systems. CHI ’24. Honolulu, HI, USA: Associ-
ation for Computing Machinery, 2024. ISBN: 9798400703300. DOI: 10.1145/
3613904.3642706. URL: https://doi.org/10.1145/3613904.3642706.

[180] Janet Nykaza, Rhonda Messinger, Fran Boehme, Cherie L. Norman, Matthew
Mace, and Manuel Gordon. “What programmers really want: results of a
needs assessment for SDK documentation”. In: SIGDOC 2002. New York, NY,
USA: ACM, 2002, pp. 133–141. DOI: 10.1145/584955.584976. URL: https:
//doi.org/10.1145/584955.584976.

[181] Observable. D3 by Observable | The JavaScript library for bespoke data visualiza-
tion. 2023. URL: d3js.org.

[182] Stephen Oney and Joel Brandt. “Codelets: Linking Interactive Documenta-
tion and Example Code in the Editor”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’12. Austin, Texas, USA: Associ-
ation for Computing Machinery, 2012, 2697–2706. ISBN: 9781450310154. DOI:
10.1145/2207676.2208664. URL: https://doi.org/10.1145/2207676.
2208664.

[183] OpenAI. ChatGPT. OpenAI. 2024. URL: https://chat.openai.com/.

[184] Dennis Pagano and Walid Maalej. “How Do Developers Blog? An Exploratory
Study”. In: Proceedings of the 8th Working Conference on Mining Software Reposi-
tories. MSR ’11. Waikiki, Honolulu, HI, USA: Association for Computing Ma-
chinery, 2011, 123–132. ISBN: 9781450305747. DOI: 10.1145/1985441.1985461.
URL: https://doi.org/10.1145/1985441.1985461.

https://doi.org/10.1145/3597503.3639187
https://doi.org/10.1145/3597503.3639187
https://doi.org/10.1145/3597503.3639187
https://doi.org/10.1109/ICSE48619.2023.00161
https://doi.org/10.1109/ICSE48619.2023.00161
https://doi.org/10.1109/ICSME.2017.64
https://doi.org/10.1109/ICSME.2017.64
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/584955.584976
https://doi.org/10.1145/584955.584976
https://doi.org/10.1145/584955.584976
d3js.org
https://doi.org/10.1145/2207676.2208664
https://doi.org/10.1145/2207676.2208664
https://doi.org/10.1145/2207676.2208664
https://chat.openai.com/
https://doi.org/10.1145/1985441.1985461
https://doi.org/10.1145/1985441.1985461

238 Bibliography

[185] Dennis Pagano and Walid Maalej. “How do open source communities blog?”
In: Empirical Software Engineering 18.6 (Dec. 2013), pp. 1090–1124. ISSN: 1573-
7616. DOI: 10.1007/s10664-012-9211-2. URL: https://doi.org/10.1007/
s10664-012-9211-2.

[186] Soya Park, Amy X. Zhang, and David R. Karger. “Post-literate Program-
ming: Linking Discussion and Code in Software Development Teams”. In:
Adjunct Proceedings of the 31st Annual ACM Symposium on User Interface Soft-
ware and Technology. UIST ’18 Adjunct. Berlin, Germany: Association for Com-
puting Machinery, 2018, 51–53. ISBN: 9781450359498. DOI: 10.1145/3266037.
3266098. URL: https://doi.org/10.1145/3266037.3266098.

[187] C. Parnin and C. Gorg. “Building Usage Contexts During Program Com-
prehension”. In: 14th IEEE International Conference on Program Comprehension
(ICPC’06). 2006, pp. 13–22. DOI: 10.1109/ICPC.2006.14.

[188] Chris Parnin. Programmer Interrupted. ninlabs research. 2013. URL: https://
blog.ninlabs.com/2013/01/programmer-interrupted/.

[189] Chris Parnin and Robert DeLine. “Evaluating Cues for Resuming Interrupted
Programming Tasks”. In: Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems. New York, NY, USA: Association for Computing
Machinery, 2010, 93–102. ISBN: 9781605589299. URL: https://doi.org/10.
1145/1753326.1753342.

[190] Chris Parnin, Carsten Görg, and Spencer Rugaber. “CodePad: interactive spaces
for maintaining concentration in programming environments”. In: Proceed-
ings of the 5th International Symposium on Software Visualization. SOFTVIS ’10.
Salt Lake City, Utah, USA: Association for Computing Machinery, 2010, 15–24.
ISBN: 9781450300285. DOI: 10.1145/1879211.1879217. URL: https://doi.
org/10.1145/1879211.1879217.

[191] Chris Parnin and Spencer Rugaber. “Resumption strategies for interrupted
programming tasks”. In: Software Quality Journal 19.1 (2011), pp. 5–34.

[192] Chris Parnin, Christoph Treude, and Margaret-Anne Storey. “Blogging de-
veloper knowledge: Motivations, challenges, and future directions”. In: 2013
21st International Conference on Program Comprehension (ICPC). 2013, pp. 211–
214. DOI: 10.1109/ICPC.2013.6613850.

[193] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Al-
berto Bacchelli. “Information Needs in Contemporary Code Review”. In: Proc.
ACM Hum.-Comput. Interact. 2.CSCW (2018). DOI: 10.1145/3274404. URL:
https://doi.org/10.1145/3274404.

[194] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert Hirschfeld.
“Studying the advancement in debugging practice of professional software
developers”. In: Software Quality Journal 25.1 (Mar. 2017), pp. 83–110. ISSN:

https://doi.org/10.1007/s10664-012-9211-2
https://doi.org/10.1007/s10664-012-9211-2
https://doi.org/10.1007/s10664-012-9211-2
https://doi.org/10.1145/3266037.3266098
https://doi.org/10.1145/3266037.3266098
https://doi.org/10.1145/3266037.3266098
https://doi.org/10.1109/ICPC.2006.14
https://blog.ninlabs.com/2013/01/programmer-interrupted/
https://blog.ninlabs.com/2013/01/programmer-interrupted/
https://doi.org/10.1145/1753326.1753342
https://doi.org/10.1145/1753326.1753342
https://doi.org/10.1145/1879211.1879217
https://doi.org/10.1145/1879211.1879217
https://doi.org/10.1145/1879211.1879217
https://doi.org/10.1109/ICPC.2013.6613850
https://doi.org/10.1145/3274404
https://doi.org/10.1145/3274404

Bibliography 239

1573-1367. DOI: 10.1007/s11219-015-9294-2. URL: https://doi.org/10.
1007/s11219-015-9294-2.

[195] Piling.js. The Piling.js Docs. Piling.js. 2021. URL: https://piling.js.org/
docs/.

[196] David Piorkowski, Scott Fleming, Christopher Scaffidi, Christopher Bogart,
Margaret Burnett, Bonnie John, Rachel Bellamy, and Calvin Swart. “Reactive
Information Foraging: An Empirical Investigation of Theory-Based Recom-
mender Systems for Programmers”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’12. Austin, Texas, USA: Associ-
ation for Computing Machinery, 2012, 1471–1480. ISBN: 9781450310154. DOI:
10.1145/2207676.2208608. URL: https://doi.org/10.1145/2207676.
2208608.

[197] David Piorkowski, Scott D. Fleming, Christopher Scaffidi, Margaret Burnett,
Irwin Kwan, Austin Z. Henley, Jamie Macbeth, Charles Hill, and Amber Hor-
vath. “To fix or to learn? How production bias affects developers’ informa-
tion foraging during debugging”. In: 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 2015, pp. 11–20. DOI: 10.1109/
ICSM.2015.7332447.

[198] David Piorkowski, Soya Park, April Yi Wang, Dakuo Wang, Michael Muller,
and Felix Portnoy. “How AI Developers Overcome Communication Chal-
lenges in a Multidisciplinary Team: A Case Study”. In: Proc. ACM Hum.-
Comput. Interact. 5.CSCW1 (2021). DOI: 10.1145/3449205. URL: https://
doi.org/10.1145/3449205.

[199] OpenAI Platform. Overview - OpenAI API. URL: https://platform.openai.
com/.

[200] Ben Popper and David Gibson. How often do people actually copy and paste from
Stack Overflow? Now we know. URL: https://stackoverflow.blog/2021/
12/30/how-often-do-people-actually-copy-and-paste-from-stack-

overflow-now-we-know/.

[201] Aniket Potdar and Emad Shihab. “An Exploratory Study on Self-Admitted
Technical Debt”. In: 2014 IEEE International Conference on Software Maintenance
and Evolution. 2014, pp. 91–100. DOI: 10.1109/ICSME.2014.31.

[202] James Prather, Brent N. Reeves, Paul Denny, Brett A. Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie An-
tonio Santos. ““It’s Weird That it Knows What I Want”: Usability and Interac-
tions with Copilot for Novice Programmers”. In: ACM Trans. Comput.-Hum.
Interact. 31.1 (2023). ISSN: 1073-0516. DOI: 10.1145/3617367. URL: https:
//doi.org/10.1145/3617367.

[203] prettier.io. prettier - npm. NPM. 2024. URL: https://www.npmjs.com/package/
prettier.

https://doi.org/10.1007/s11219-015-9294-2
https://doi.org/10.1007/s11219-015-9294-2
https://doi.org/10.1007/s11219-015-9294-2
https://piling.js.org/docs/
https://piling.js.org/docs/
https://doi.org/10.1145/2207676.2208608
https://doi.org/10.1145/2207676.2208608
https://doi.org/10.1145/2207676.2208608
https://doi.org/10.1109/ICSM.2015.7332447
https://doi.org/10.1109/ICSM.2015.7332447
https://doi.org/10.1145/3449205
https://doi.org/10.1145/3449205
https://doi.org/10.1145/3449205
https://platform.openai.com/
https://platform.openai.com/
https://stackoverflow.blog/2021/12/30/how-often-do-people-actually-copy-and-paste-from-stack-overflow-now-we-know/
https://stackoverflow.blog/2021/12/30/how-often-do-people-actually-copy-and-paste-from-stack-overflow-now-we-know/
https://stackoverflow.blog/2021/12/30/how-often-do-people-actually-copy-and-paste-from-stack-overflow-now-we-know/
https://doi.org/10.1109/ICSME.2014.31
https://doi.org/10.1145/3617367
https://doi.org/10.1145/3617367
https://doi.org/10.1145/3617367
https://www.npmjs.com/package/prettier
https://www.npmjs.com/package/prettier

240 Bibliography

[204] Pooja Rani, Mathias Birrer, Sebastiano Panichella, Mohammad Ghafari, and
Oscar Nierstrasz. “What do developers discuss about code comments?” In:
2021 IEEE 21st International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE. 2021, pp. 153–164.

[205] Sarah Rastkar, Gail C Murphy, and Gabriel Murray. “Summarizing software
artifacts: a case study of bug reports”. In: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1. 2010, pp. 505–514.

[206] Eric Rawn, Jingyi Li, Eric Paulos, and Sarah E. Chasins. “Understanding Ver-
sion Control as Material Interaction with Quickpose”. In: Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems. CHI ’23. Ham-
burg, Germany: Association for Computing Machinery, 2023. ISBN: 9781450394215.
DOI: 10.1145/3544548.3581394. URL: https://doi.org/10.1145/3544548.
3581394.

[207] Steven P Reiss. “Trace-based debugging”. In: International Workshop on Auto-
mated and Algorithmic Debugging. Springer. 1993, pp. 305–314.

[208] Steven P. Reiss. “Tracking Source Locations”. In: Proceedings of the 30th Inter-
national Conference on Software Engineering. ICSE ’08. Leipzig, Germany: Asso-
ciation for Computing Machinery, 2008, 11–20. ISBN: 9781605580791. DOI: 10.
1145/1368088.1368091. URL: https://doi.org/10.1145/1368088.1368091.

[209] Peter C. Rigby, Yue Cai Zhu, Samuel M. Donadelli, and Audris Mockus.
“Quantifying and mitigating turnover-induced knowledge loss: case stud-
ies of chrome and a project at avaya”. In: Proceedings of the 38th International
Conference on Software Engineering. ICSE ’16. Austin, Texas: Association for
Computing Machinery, 2016, 1006–1016. ISBN: 9781450339001. DOI: 10.1145/
2884781.2884851. URL: https://doi.org/10.1145/2884781.2884851.

[210] Martin P. Robillard. “Turnover-Induced Knowledge Loss in Practice”. In: Pro-
ceedings of the 29th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering. ESEC/FSE 2021.
Athens, Greece: Association for Computing Machinery, 2021, 1292–1302. ISBN:
9781450385626. DOI: 10.1145/3468264.3473923. URL: https://doi.org/10.
1145/3468264.3473923.

[211] Martin P. Robillard. “What Makes APIs Hard to Learn? Answers from Devel-
opers”. In: IEEE Software 26 (6 Oct. 2009), pp. 27–34. DOI: 10.1109/MS.2009.
193. URL: https://doi.org/10.1109/MS.2009.193.

[212] Martin P. Robillard and Robert DeLine. “A field study of API learning obsta-
cles”. In: Empirical Software Engineering 16 (6 2011), pp. 703–732.

[213] M.P. Robillard, W. Coelho, and G.C. Murphy. “How effective developers in-
vestigate source code: an exploratory study”. In: IEEE Transactions on Software
Engineering 30.12 (2004), pp. 889–903. DOI: 10.1109/TSE.2004.101.

https://doi.org/10.1145/3544548.3581394
https://doi.org/10.1145/3544548.3581394
https://doi.org/10.1145/3544548.3581394
https://doi.org/10.1145/1368088.1368091
https://doi.org/10.1145/1368088.1368091
https://doi.org/10.1145/1368088.1368091
https://doi.org/10.1145/2884781.2884851
https://doi.org/10.1145/2884781.2884851
https://doi.org/10.1145/2884781.2884851
https://doi.org/10.1145/3468264.3473923
https://doi.org/10.1145/3468264.3473923
https://doi.org/10.1145/3468264.3473923
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1109/TSE.2004.101

Bibliography 241

[214] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. “How do
professional developers comprehend software?” In: ICSE 2012. New York,
NY, USA: ACM, 2012, pp. 632–542. DOI: 10.1109/ICSE.2012.6227188. URL:
https://doi.org/10.1109/ICSE.2012.6227188.

[215] Daniel M Russell, Mark J Stefik, Peter Pirolli, and Stuart K Card. “The cost
structure of sensemaking”. In: Proceedings of the INTERACT’93 and CHI’93
conference on Human factors in computing systems. 1993, pp. 269–276.

[216] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. “Modern Code Review: A Case Study at Google”. In: Proceedings
of the 40th International Conference on Software Engineering: Software Engineer-
ing in Practice. ICSE-SEIP ’18. Gothenburg, Sweden: Association for Comput-
ing Machinery, 2018, 181–190. ISBN: 9781450356596. DOI: 10.1145/3183519.
3183525. URL: https://doi.org/10.1145/3183519.3183525.

[217] Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. “How developers
search for code: a case study”. In: Proceedings of the 2015 10th joint meeting on
foundations of software engineering. 2015, pp. 191–201.

[218] Bill N Schilit, Gene Golovchinsky, and Morgan N Price. “Beyond paper: sup-
porting active reading with free form digital ink annotations”. In: Proceedings
of the SIGCHI conference on Human factors in computing systems. 1998, pp. 249–
256.

[219] Donghwan Shin, Domenico Bianculli, and Lionel Briand. “Effective Removal
of Operational Log Messages: an Application to Model Inference”. In: arXiv
preprint arXiv:2004.07194 (2020).

[220] Yusuke Shinyama, Yoshitaka Arahori, and Katsuhiko Gondow. “Analyzing
Code Comments to Boost Program Comprehension”. In: 2018 25th Asia-Pacific
Software Engineering Conference (APSEC). 2018, pp. 325–334. DOI: 10.1109/
APSEC.2018.00047.

[221] Frank Shipman, Morgan Price, Catherine C. Marshall, and Gene Golovchin-
sky. “Identifying Useful Passages in Documents Based on Annotation Pat-
terns”. In: International Conference on Theory and Practice of Digital Libraries
2769 (2003), pp. 101–112. DOI: 10.1007/978-3-540-45175-4_11. URL: https:
//doi.org/10.1007/978-3-540-45175-4_11.

[222] Yulia Shmerlin, Irit Hadar, Doron Kliger, and Hayim Makabee. “To docu-
ment or not to document? An exploratory study on developers’ motivation
to document code”. In: Advanced Information Systems Engineering Workshops:
CAiSE 2015 International Workshops, Stockholm, Sweden, June 8-9, 2015, Proceed-
ings 27. Springer. 2015, pp. 100–106.

[223] Ben Shneiderman. Software psychology: Human factors in computer and informa-
tion systems (Winthrop computer systems series). Winthrop Publishers, 1980.

https://doi.org/10.1109/ICSE.2012.6227188
https://doi.org/10.1109/ICSE.2012.6227188
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1109/APSEC.2018.00047
https://doi.org/10.1109/APSEC.2018.00047
https://doi.org/10.1007/978-3-540-45175-4_11
https://doi.org/10.1007/978-3-540-45175-4_11
https://doi.org/10.1007/978-3-540-45175-4_11

242 Bibliography

[224] Nischal Shrestha, Titus Barik, and Chris Parnin. “Unravel: A Fluent Code
Explorer for Data Wrangling”. In: The 34th Annual ACM Symposium on User
Interface Software and Technology. 2021, pp. 198–207.

[225] Stephen Shum and Curtis Cook. “Using Literate Programming to Teach Good
Programming Practices”. In: Proceedings of the Twenty-Fifth SIGCSE Sympo-
sium on Computer Science Education. SIGCSE ’94. Phoenix, Arizona, USA: As-
sociation for Computing Machinery, 1994, 66–70. ISBN: 0897916468. DOI: 10.
1145/191029.191059. URL: https://doi.org/10.1145/191029.191059.

[226] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. “Asking and Answer-
ing Questions during a Programming Change Task”. In: IEEE Transactions on
Software Engineering 34.4 (2008), pp. 434–451. DOI: 10.1109/TSE.2008.26.

[227] Ananya Singha, Bhavya Chopra, Anirudh Khatry, Sumit Gulwani, Austin Z.
Henley, Vu Le, Chris Parnin, Mukul Singh, and Gust Verbruggen. Semantically
Aligned Question and Code Generation for Automated Insight Generation. 2024.
arXiv: 2405.01556 [cs.SE]. URL: https://arxiv.org/abs/2405.01556.

[228] Zéphyrin Soh, Foutse Khomh, Yann-Gaël Guéhéneuc, and Giuliano Anto-
niol. “Noise in Mylyn interaction traces and its impact on developers and
recommendation systems”. In: Empirical Software Engineering 23.2 (Apr. 2018),
pp. 645–692. ISSN: 1573-7616. DOI: 10.1007/s10664-017-9529-x. URL: https:
//doi.org/10.1007/s10664-017-9529-x.

[229] Jeongju Sohn and Shin Yoo. “FLUCCS: Using Code and Change Metrics to
Improve Fault Localization”. In: Proceedings of the 26th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis. ISSTA 2017. Santa Bar-
bara, CA, USA: Association for Computing Machinery, 2017, 273–283. ISBN:
9781450350761. DOI: 10.1145/3092703.3092717. URL: https://doi.org/10.
1145/3092703.3092717.

[230] Illia Solohubov, Artur Moroz, Mariia Yu Tiahunova, Halyna H Kyrychek, and
Stepan Skrupsky. “Accelerating software development with AI: exploring the
impact of ChatGPT and GitHub Copilot.” In: CTE. 2023, pp. 76–86.

[231] Cleidson R. B. de Souza, Gema Rodríguez-Pérez, Manaal Basha, Dongwook
Yoon, and Ivan Beschastnikh. “The Fine Balance Between Helping With Your
Job And Taking It: AI Code Assistants Come To The Fore”. In: IEEE Software
(2024), pp. 1–6. DOI: 10.1109/MS.2024.3357787.

[232] Sergio Cozzetti B. de Souza, Nicolas Anquetil, and Káthia M. de Oliveira.
“A Study of the Documentation Essential to Software Maintenance”. In: Pro-
ceedings of the 23rd Annual International Conference on Design of Communication:
Documenting and Designing for Pervasive Information. SIGDOC ’05. Coventry,
United Kingdom: Association for Computing Machinery, 2005, 68–75. ISBN:
1595931759. DOI: 10.1145/1085313.1085331. URL: https://doi.org/10.
1145/1085313.1085331.

https://doi.org/10.1145/191029.191059
https://doi.org/10.1145/191029.191059
https://doi.org/10.1145/191029.191059
https://doi.org/10.1109/TSE.2008.26
https://arxiv.org/abs/2405.01556
https://arxiv.org/abs/2405.01556
https://doi.org/10.1007/s10664-017-9529-x
https://doi.org/10.1007/s10664-017-9529-x
https://doi.org/10.1007/s10664-017-9529-x
https://doi.org/10.1145/3092703.3092717
https://doi.org/10.1145/3092703.3092717
https://doi.org/10.1145/3092703.3092717
https://doi.org/10.1109/MS.2024.3357787
https://doi.org/10.1145/1085313.1085331
https://doi.org/10.1145/1085313.1085331
https://doi.org/10.1145/1085313.1085331

Bibliography 243

[233] Sruti Srinivasa Ragavan, Sandeep Kaur Kuttal, Charles Hill, Anita Sarma,
David Piorkowski, and Margaret Burnett. “Foraging among an overabun-
dance of similar variants”. In: Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems. 2016, pp. 3509–3521.

[234] Captain Stack. Captain Stack - Code suggestion for VSCode. URL: https : / /
github.com/hieunc229/copilot-clone.

[235] Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco Aurelio Gerosa, and
David F Redmiles. “A systematic literature review on the barriers faced by
newcomers to open source software projects”. In: Information and Software
Technology 59 (2015), pp. 67–85.

[236] Christoph Johann Stettina and Werner Heijstek. “Necessary and Neglected?
An Empirical Study of Internal Documentation in Agile Software Develop-
ment Teams”. In: Proceedings of the 29th ACM International Conference on Design
of Communication. SIGDOC ’11. Pisa, Italy: Association for Computing Ma-
chinery, 2011, 159–166. ISBN: 9781450309363. DOI: 10.1145/2038476.2038509.
URL: https://doi.org/10.1145/2038476.2038509.

[237] Margaret-Anne Storey, Jody Ryall, R. Ian Bull, Del Myers, and Janice Singer.
“TODO or to bug”. In: 2008 ACM/IEEE 30th International Conference on Soft-
ware Engineering. 2008, pp. 251–260. DOI: 10.1145/1368088.1368123.

[238] Margaret-Anne Storey, Jody Ryall, Janice Singer, Del Myers, Li-Te Cheng,
and Michael Muller. “How Software Developers Use Tagging to Support Re-
minding and Refinding”. In: IEEE Transactions on Software Engineering 35.4
(2009), pp. 470–483. DOI: 10.1109/TSE.2009.15.

[239] Siddharth Subramanian and Reid Holmes. “Making sense of online code
snippets”. In: 2013 10th Working Conference on Mining Software Repositories
(MSR). 2013, pp. 85–88. DOI: 10.1109/MSR.2013.6624012.

[240] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. “/* iComment:
Bugs or bad comments?*”. In: Proceedings of twenty-first ACM SIGOPS sympo-
sium on Operating systems principles. 2007, pp. 145–158.

[241] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T Leavens. “@ tcomment:
Testing javadoc comments to detect comment-code inconsistencies”. In: 2012
IEEE Fifth International Conference on Software Testing, Verification and Valida-
tion. IEEE. 2012, pp. 260–269.

[242] Minaoar Hossain Tanzil, Junaed Younus Khan, and Gias Uddin. “ChatGPT
Incorrectness Detection in Software Reviews”. In: Proceedings of the IEEE/ACM
46th International Conference on Software Engineering. ICSE ’24. Lisbon, Portu-
gal: Association for Computing Machinery, 2024. ISBN: 9798400702174. DOI:
10.1145/3597503.3639194. URL: https://doi.org/10.1145/3597503.
3639194.

https://github.com/hieunc229/copilot-clone
https://github.com/hieunc229/copilot-clone
https://doi.org/10.1145/2038476.2038509
https://doi.org/10.1145/2038476.2038509
https://doi.org/10.1145/1368088.1368123
https://doi.org/10.1109/TSE.2009.15
https://doi.org/10.1109/MSR.2013.6624012
https://doi.org/10.1145/3597503.3639194
https://doi.org/10.1145/3597503.3639194
https://doi.org/10.1145/3597503.3639194

244 Bibliography

[243] Craig S. Tashman and W. Keith Edwards. “Active Reading and Its Discon-
tents: The Situations, Problems and Ideas of Readers”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. CHI ’11. Van-
couver, BC, Canada: Association for Computing Machinery, 2011, 2927–2936.
ISBN: 9781450302289. DOI: 10.1145/1978942.1979376. URL: https://doi.
org/10.1145/1978942.1979376.

[244] Grace Taylor and Steven Clarke. “A Tour Through Code: Helping Develop-
ers Become Familiar with Unfamiliar Code”. In: Psychology of Programming
Interest Group 33rd Annual Workshop. PPIG 2022, pp. 114–126.

[245] Suresh Thummalapenta and Tao Xie. “Parseweb: A Programmer Assistant
for Reusing Open Source Code on the Web”. In: Proceedings of the 22nd IEEE/ACM
International Conference on Automated Software Engineering. ASE ’07. Atlanta,
Georgia, USA: Association for Computing Machinery, 2007, 204–213. ISBN:
9781595938824. DOI: 10.1145/1321631.1321663. URL: https://doi.org/10.
1145/1321631.1321663.

[246] Yingchen Tian, Yuxia Zhang, Klaas-Jan Stol, Lin Jiang, and Hui Liu. “What
Makes a Good Commit Message?” In: Proceedings of the 44th International Con-
ference on Software Engineering. ICSE ’22. Pittsburgh, Pennsylvania: Associa-
tion for Computing Machinery, 2022, 2389–2401. ISBN: 9781450392211. DOI:
10.1145/3510003.3510205. URL: https://doi.org/10.1145/3510003.
3510205.

[247] Christoph Treude and Margaret-Anne Storey. “Work Item Tagging: Commu-
nicating Concerns in Collaborative Software Development”. In: IEEE Transac-
tions on Software Engineering 38.1 (2012), pp. 19–34. DOI: 10.1109/TSE.2010.
91.

[248] Jason Tsay, Laura Dabbish, and James Herbsleb. “Influence of Social and
Technical Factors for Evaluating Contribution in GitHub”. In: Proceedings of
the 36th International Conference on Software Engineering. ICSE 2014. Hyder-
abad, India: Association for Computing Machinery, 2014, 356–366. ISBN: 9781450327565.
DOI: 10.1145/2568225.2568315. URL: https://doi.org/10.1145/2568225.
2568315.

[249] Gias Uddin and Martin P. Robillard. “How API Documentation Fails”. In:
IEEE Software 32 (4 Aug. 2015), pp. 68–75. DOI: 10.1109/MS.2014.80. URL:
https://doi.org/10.1109/MS.2014.80.

[250] uuid. uuid - npm. NPM. 2024. URL: https://www.npmjs.com/package/uuid.

[251] Max G. Van Kleek, Wolfe Styke, m.c. schraefel, and David Karger. “Find-
ers/keepers: a longitudinal study of people managing information scraps in
a micro-note tool”. In: Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems. CHI ’11. Vancouver, BC, Canada: Association for

https://doi.org/10.1145/1978942.1979376
https://doi.org/10.1145/1978942.1979376
https://doi.org/10.1145/1978942.1979376
https://doi.org/10.1145/1321631.1321663
https://doi.org/10.1145/1321631.1321663
https://doi.org/10.1145/1321631.1321663
https://doi.org/10.1145/3510003.3510205
https://doi.org/10.1145/3510003.3510205
https://doi.org/10.1145/3510003.3510205
https://doi.org/10.1109/TSE.2010.91
https://doi.org/10.1109/TSE.2010.91
https://doi.org/10.1145/2568225.2568315
https://doi.org/10.1145/2568225.2568315
https://doi.org/10.1145/2568225.2568315
https://doi.org/10.1109/MS.2014.80
https://doi.org/10.1109/MS.2014.80
https://www.npmjs.com/package/uuid

Bibliography 245

Computing Machinery, 2011, 2907–2916. ISBN: 9781450302289. DOI: 10.1145/
1978942.1979374. URL: https://doi.org/10.1145/1978942.1979374.

[252] Fernanda B. Viégas, Martin Wattenberg, and Kushal Dave. “Studying Co-
operation and Conflict between Authors with History Flow Visualizations”.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems. CHI ’04. Vienna, Austria: Association for Computing Machinery, 2004,
575–582. ISBN: 1581137028. DOI: 10.1145/985692.985765. URL: https://
doi.org/10.1145/985692.985765.

[253] April Yi Wang, Andrew Head, Ashley Zhang, Steve Oney, and Christopher
Brooks. “Colaroid: A Literate Programming Approach for Authoring Explorable
Multi-Stage Tutorials”. In: Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems. CHI ’23. DOI: 10.1145/3544548.3581525. URL:
https://doi.org/10.1145/3544548.3581525.

[254] April Yi Wang, Anant Mittal, Christopher Brooks, and Steve Oney. “How
Data Scientists Use Computational Notebooks for Real-Time Collaboration”.
In: Proc. ACM Hum.-Comput. Interact. 3.CSCW (2019). DOI: 10.1145/3359141.
URL: https://doi.org/10.1145/3359141.

[255] April Yi Wang, Zihan Wu, Christopher Brooks, and Steve Oney. “Callisto:
Capturing the "Why" by Connecting Conversations with Computational Nar-
ratives”. In: Proceedings of the 2020 CHI Conference on Human Factors in Com-
puting Systems. CHI ’20. Honolulu, HI, USA: Association for Computing Ma-
chinery, 2020, 1–13. ISBN: 9781450367080. DOI: 10.1145/3313831.3376740.
URL: https://doi.org/10.1145/3313831.3376740.

[256] Dakuo Wang, Judith S. Olson, Jingwen Zhang, Trung Nguyen, and Gary M.
Olson. “DocuViz: Visualizing Collaborative Writing”. In: Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems. CHI
’15. Seoul, Republic of Korea: Association for Computing Machinery, 2015,
1865–1874. ISBN: 9781450331456. DOI: 10.1145/2702123.2702517. URL: https:
//doi.org/10.1145/2702123.2702517.

[257] Thomas Weber, Maximilian Brandmaier, Albrecht Schmidt, and Sven Mayer.
“Significant Productivity Gains through Programming with Large Language
Models”. In: Proc. ACM Hum.-Comput. Interact. 8.EICS (2024). DOI: 10.1145/
3661145. URL: https://doi.org/10.1145/3661145.

[258] Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. “A large-
scale empirical study on code-comment inconsistencies”. In: 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC). IEEE. 2019,
pp. 53–64.

[259] Richard Wettel and Michele Lanza. “Visualizing Software Systems as Cities”.
In: 2007 4th IEEE International Workshop on Visualizing Software for Understand-
ing and Analysis. 2007, pp. 92–99. DOI: 10.1109/VISSOF.2007.4290706.

https://doi.org/10.1145/1978942.1979374
https://doi.org/10.1145/1978942.1979374
https://doi.org/10.1145/1978942.1979374
https://doi.org/10.1145/985692.985765
https://doi.org/10.1145/985692.985765
https://doi.org/10.1145/985692.985765
https://doi.org/10.1145/3544548.3581525
https://doi.org/10.1145/3544548.3581525
https://doi.org/10.1145/3359141
https://doi.org/10.1145/3359141
https://doi.org/10.1145/3313831.3376740
https://doi.org/10.1145/3313831.3376740
https://doi.org/10.1145/2702123.2702517
https://doi.org/10.1145/2702123.2702517
https://doi.org/10.1145/2702123.2702517
https://doi.org/10.1145/3661145
https://doi.org/10.1145/3661145
https://doi.org/10.1145/3661145
https://doi.org/10.1109/VISSOF.2007.4290706

246 Bibliography

[260] Jacqueline Whalley, Amber Settle, and Andrew Luxton-Reilly. “Novice Re-
flections on Debugging”. In: Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education. SIGCSE ’21. Virtual Event, USA: Association
for Computing Machinery, 2021, 73–79. ISBN: 9781450380621. DOI: 10.1145/
3408877.3432374. URL: https://doi.org/10.1145/3408877.3432374.

[261] Moritz Wittenhagen, Christian Cherek, and Jan Borchers. “Chronicler: Inter-
active Exploration of Source Code History”. In: Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems. CHI ’16. San Jose, Cali-
fornia, USA: Association for Computing Machinery, 2016, 3522–3532. ISBN:
9781450333627. DOI: 10.1145/2858036.2858442. URL: https://doi.org/10.
1145/2858036.2858442.

[262] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. “How do
developers utilize source code from stack overflow?” In: Empirical Software
Engineering 24 (2019), pp. 637–673.

[263] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E. Hassan,
and Zhenchang Xing. “What do developers search for on the web?” In: Empir-
ical Software Engineering 22.6 (Dec. 2017), pp. 3149–3185. ISSN: 1573-7616. DOI:
10.1007/s10664-017-9514-4. URL: https://doi.org/10.1007/s10664-
017-9514-4.

[264] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jor-
dan. “Detecting large-scale system problems by mining console logs”. In: Pro-
ceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles.
SOSP ’09. Big Sky, Montana, USA: Association for Computing Machinery,
2009, 117–132. ISBN: 9781605587523. DOI: 10.1145/1629575.1629587. URL:
https://doi.org/10.1145/1629575.1629587.

[265] Wei Xu, Ling Huang, and Michael Jordan. “Experience mining Google’s pro-
duction console logs”. In: Workshop on Managing Systems via Log Analysis and
Machine Learning Techniques (SLAML 10). 2010.

[266] Yinxing Xue, Zhenchang Xing, and Stan Jarzabek. “Understanding Feature
Evolution in a Family of Product Variants”. In: 2010 17th Working Conference
on Reverse Engineering. 2010, pp. 109–118. DOI: 10.1109/WCRE.2010.20.

[267] Burak Yetiştiren, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. Evaluating
the Code Quality of AI-Assisted Code Generation Tools: An Empirical Study on
GitHub Copilot, Amazon CodeWhisperer, and ChatGPT. 2023. arXiv: 2304.10778
[cs.SE]. URL: https://arxiv.org/abs/2304.10778.

[268] Nur Yildirim, Changhoon Oh, Deniz Sayar, Kayla Brand, Supritha Challa,
Violet Turri, Nina Crosby Walton, Anna Elise Wong, Jodi Forlizzi, James Mc-
Cann, and John Zimmerman. “Creating Design Resources to Scaffold the
Ideation of AI Concepts”. In: Proceedings of the 2023 ACM Designing Interactive
Systems Conference. DIS ’23. Pittsburgh, PA, USA: Association for Computing

https://doi.org/10.1145/3408877.3432374
https://doi.org/10.1145/3408877.3432374
https://doi.org/10.1145/3408877.3432374
https://doi.org/10.1145/2858036.2858442
https://doi.org/10.1145/2858036.2858442
https://doi.org/10.1145/2858036.2858442
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1145/1629575.1629587
https://doi.org/10.1145/1629575.1629587
https://doi.org/10.1109/WCRE.2010.20
https://arxiv.org/abs/2304.10778
https://arxiv.org/abs/2304.10778
https://arxiv.org/abs/2304.10778

Bibliography 247

Machinery, 2023, 2326–2346. ISBN: 9781450398930. DOI: 10.1145/3563657.
3596058. URL: https://doi.org/10.1145/3563657.3596058.

[269] Young Seok Yoon and Brad A. Myers. “A longitudinal study of programmers’
backtracking”. In: 2014 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 2014, pp. 101–108. DOI: 10.1109/VLHCC.2014.6883030.

[270] YoungSeok Yoon and Brad A. Myers. “Semantic zooming of code change his-
tory”. In: 2015 IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC). 2015, pp. 95–99. DOI: 10.1109/VLHCC.2015.7357203.

[271] YoungSeok Yoon and Brad A. Myers. “Supporting Selective Undo in a Code
Editor”. In: 2015 IEEE/ACM 37th IEEE International Conference on Software En-
gineering. Vol. 1. 2015, pp. 223–233. DOI: 10.1109/ICSE.2015.43.

[272] Xiao Yu, Lei Liu, Xing Hu, Jacky Wai Keung, Jin Liu, and Xin Xia. Fight Fire
with Fire: How Much Can We Trust ChatGPT on Source Code-Related Tasks? 2024.
arXiv: 2405.12641 [cs.SE]. URL: https://arxiv.org/abs/2405.12641.

[273] Alexey Zagalsky, Ohad Barzilay, and Amiram Yehudai. “Example Overflow:
Using social media for code recommendation”. In: 2012 Third International
Workshop on Recommendation Systems for Software Engineering (RSSE). 2012,
pp. 38–42. DOI: 10.1109/RSSE.2012.6233407.

[274] Iyad Zayour and Timothy C Lethbridge. “A cognitive and user centric based
approach for reverse engineering tool design”. In: Proceedings of the 2000 con-
ference of the Centre for Advanced Studies on Collaborative research. 2000, p. 16.

[275] Andreas Zeller. Why programs fail: a guide to systematic debugging. Morgan
Kaufmann, 2009.

[276] Haoxiang Zhang, Shaowei Wang, Tse-Hsun Chen, Ying Zou, and Ahmed E.
Hassan. “An Empirical Study of Obsolete Answers on Stack Overflow”. In:
IEEE Transactions on Software Engineering 47.4 (2021), pp. 850–862. DOI: 10.
1109/TSE.2019.2906315.

[277] Tianyi Zhang, Di Yang, Crista Lopes, and Miryung Kim. “Analyzing and
Supporting Adaptation of Online Code Examples”. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). 2019, pp. 316–327. DOI:
10.1109/ICSE.2019.00046.

[278] J. Zhi, V. Garousi-Yusifoglu, B. Sun, G. Garousi, S. Shahnewaz, and G. Ruhe.
“Cost benefits and quality of software development documentation: a sys-
tematic mapping”. In: Journal of Systems and Software 99 (2015).

[279] Sacha Zyto, David Karger, Mark Ackerman, and Sanjoy Mahajan. “Success-
ful classroom deployment of a social document annotation system”. In: CHI
2012. New York, NY, USA: ACM, 2012, pp. 1883–1892. DOI: 10.1145/2207676.
2208326. URL: https://doi.org/10.1145/2207676.2208326.

https://doi.org/10.1145/3563657.3596058
https://doi.org/10.1145/3563657.3596058
https://doi.org/10.1145/3563657.3596058
https://doi.org/10.1109/VLHCC.2014.6883030
https://doi.org/10.1109/VLHCC.2015.7357203
https://doi.org/10.1109/ICSE.2015.43
https://arxiv.org/abs/2405.12641
https://arxiv.org/abs/2405.12641
https://doi.org/10.1109/RSSE.2012.6233407
https://doi.org/10.1109/TSE.2019.2906315
https://doi.org/10.1109/TSE.2019.2906315
https://doi.org/10.1109/ICSE.2019.00046
https://doi.org/10.1145/2207676.2208326
https://doi.org/10.1145/2207676.2208326
https://doi.org/10.1145/2207676.2208326

	Abstract
	Acknowledgements
	Introduction
	Why Meta-Information?
	Meta-Information Properties
	Source Properties

	Overview

	Background and Related Work
	Making Sense of Code
	Developer Tools

	Meta-Information About Code
	Writing About Code
	Other Meta-Information

	Adamite: Meta-Information as Annotations on Documentation
	Overview
	Preliminary Studies and Design Goals
	Lab Study with Hypothesis
	Corpus Analysis of Hypothesis Annotations
	Design Goals

	Overview of Adamite
	Lab Study
	Method
	Results

	Limitations
	Discussion

	Catseye: Meta-Information for Sensemaking About Code
	Overview
	Catseye
	Overview of Catseye
	Background and Design Goals
	Implementation Notes

	Lab Study
	Method
	Participants
	Analysis

	Results
	What Information Do Developers Keep Track of with Annotations and Artifacts?
	How Do Developers Use Their Annotations and Artifacts?
	How Did Participants Identify and Fix Their Bugs?
	Continued Usage

	Discussion
	My Usage of Catseye
	Conclusion and Future Work

	Curating Ephemeral Meta-Information with Catseye
	Overview
	Background and Related Work
	Preliminary Exploration of Adamite Annotation Curation
	Preliminary Study of Catseye Annotations
	Design Probe: Catseye Annotation Curation through Re-Anchoring
	Algorithmic Re-Anchoring
	User Interface for Re-Anchoring

	Design Probe: Catseye Annotation Curation through Batch Processing
	User Interface for Batch Processing
	Merging Annotations

	Discussion and Future Work

	Sodalite: Meta-Information to Support Documentation Management
	Overview
	Background and Related Work
	Sodalite
	Templates
	Code Links and Suggestions
	Support for Reading
	Support for Maintenance

	Evaluation of Sodalite
	Study Design
	Study Results

	Discussion and Future Work

	Meta-Manager: Meta-Information for Question-Answering
	Overview
	Overview of Meta-Manager
	Developer Information Needs
	Scenario
	Detailed Meta-Manager Design
	Implementation

	Lab Study
	Method
	Participants
	Quantitative Results
	Qualitative Results

	Discussion
	Limitations and Threats to Validity
	Future Work
	Conclusion

	MMAI: Accelerating Sensemaking with Logs and LLMs
	Overview
	Background and Related Work
	Terminology and Background
	Print Debugging

	Exploratory Interview Study
	Method
	Results and Discussion

	Overview of MMAI
	Scenario
	Detailed Design
	Implementation

	Discussion
	Future Work and Conclusion

	Conclusion and Future Work
	Summary of Contributions
	Discussion and Future Work
	Designing with Information Ephemerality In Mind
	Designing for the Software Engineer of Tomorrow
	Designing for Meta-Information as a First-Class Entity

	Concluding Remarks

	Meta-Manager Architecture and History Model
	MMAI GPT-4 Prompts
	Pre-Processing History Prompt
	Prompt

	Default User Query Prompt
	Prompt

	Chapter 3 Study Replication Materials
	Preliminary Study Materials
	Protocol
	Task Source Code

	Lab Study Materials
	Adamite Authoring Condition Protocol
	Adamite Using Condition Protocol
	Control Condition Protocol
	Post-Task Survey
	Task Source Code

	Chapter 4 Study Replication Materials
	Catseye Condition Protocol
	Consent
	Part 1: Tutorial
	Part 2: Task
	Part 3: After Task

	Control Condition Protocol
	Consent
	Part 1: Tutorial
	Part 2: Task
	Part 3: After Task

	Post-Task Survey
	Notes
	Survey

	Chapter 6 Study Replication Materials
	Sodalite Study Protocol
	Introduction
	Tutorial
	Study

	Post-Task Survey

	Chapter 7 Study Replication Materials
	Meta-Manager Study Protocol
	Tutorial
	Task
	End Task

	Post-Task Survey

	Chapter 8 Interview Protocol
	Protocol
	Questions

	Bibliography

