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Abstract

Software development requires developers to juggle and balance many information-
seeking and understanding tasks. From determining how a bug was introduced, to
choosing what API method to use to resolve the bug, to how to properly integrate
this change, even the smallest implementation tasks can lead to many questions.
These questions may range from hard-to-answer questions about the rationale be-
hind the original code to common questions such as how to use an API. Once this
challenging sensemaking is done, this rich thought history is often lost given the
high cost of externalizing these details, despite potentially being useful to future
developers.

In this thesis, I explore different systems and methods for authoring and using
this rich meta-information. Specifically, I have developed systems for annotating to
support developers’ natural sensemaking when understanding information-dense
sources such as software documentation and source code. I then demonstrated how
this meta-information can be harnessed and used in new ways, including for assess-
ing the trustworthiness of documentation and for capturing design rationale and
provenance data of code.

To begin exploring to what extent meta-information for software developers may
be utilized to support sensemaking during software development tasks, I developed
Adamite, a browser extension that enables developers to annotate and organize
their questions, open tasks, issues, and other thoughts about API documentation.
Adamite was inspired by the fact that developers often face barriers brought upon
by questions and issues with API documentation and the insight that it is likely that
other developers have already experienced those barriers and eventually overcame
them. Indeed, when using developer-annotated documentation, participants were
able to complete significantly more of a challenging programming task compared
to the baseline. Given this success, I generalized Adamite’s annotating approach to
the IDE with the Catseye plugin for Visual Studio Code, and focused on helping the
original developer better keep track of information to answer their own questions.
The following project, Sodalite, expanded the Catseye approach to support long-
form content through leveraging the relationship between the source document and
annotation anchor points to serve as a signal for the “health” of the document. To
lower the information authoring cost and account for the issue of scale, I then cre-
ated the Meta-Manager which automatically versions and extracts meta-information
about code and its provenance. Through all of these projects, this thesis has explored
the ways in which meta-information may be presented and how the unique prop-
erties of code and the rich contextualized information about it may be harnessed to
help developers in supporting their information seeking and understanding tasks.

While these systems have worked well in isolation, each only tackle a subset
of the types of information developers need and utilize only some of the available
meta-information about code. Further, given the shifting nature of software engi-
neering tasks with the rise of AI code-generation systems, we have shown that our
system can track and collect some of this information. To conclude this thesis, I
propose extending the Meta-Manager to work with my other systems to explore to
what extent combining these forms of meta information can answer otherwise unan-
swerable questions, while extending the systems to capture other significant types of
meta information, such as CoPilot prompts and GitHub commit messages. Similar
to my previous work, I plan to evaluate the integrated system through experiments
to understand to what extent these new classes of meta-information can actually
help developers answer their real questions about code.
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Chapter 1

Introduction

Developing software requires developers to keep track of many types of information
while performing various interleaved tasks. For example, to debug some code, a
developer must first navigate through the code to determine what part or parts of the
code are responsible for the bug [85, 92, 128], run the code and diagnose the output
to understand how and when the code fails [87, 92, 128], write code and possibly
research solutions online to fix the bug [20, 94, 170], then test the code again to ensure
the solution worked [48]. Typically, the developer’s mental model of this rapidly-
evolving problem space is not externalized [24, 98, 124], which can be problematic
as working memory is limited [62, 105, 157]. Further, development processes are
often iterative [82], can be interrupted [123, 124], and may just be one task amongst
many that the developer is handling [83], leading to further cognitive strain.

Given this significant cognitive cost, many research projects have enumerated
the challenges in both writing and understanding code. Just some of the challenges
include maintaining task awareness [104, 123, 124], making sense of external li-
braries and their documentation [4, 65, 115] (with software documentation, itself,
having its own set of well-known problems [4, 93, 118, 137, 163]), understanding
the rationale behind the current code [83, 91, 104, 146], determining what part or
parts of the code are relevant to the change the developer is introducing [82, 88],
and designing that change and implementing it [88, 94]. Completing these smaller
information-intensive tasks often results in the creation of knowledge that is lost,
either because it is not externalized by the progenitor of the information or because
it is not logged.

Some qualities of programming make tracking this information especially chal-
lenging in comparison to other complex sensemaking domains. For one, a devel-
oper’s end-state is not often reaching an answer or decision to these implicit ques-
tions, but is to utilize that information to complete some programming-related task,
such as fixing a bug. Secondly, the information landscape is often changing as the
developer introduces new code, which can produce new runtime behaviors and in-
troduce new questions. This means that a) the developer does not normally have
the mental bandwidth to externalize this information beyond, perhaps, a short note
[68, 98]; b) this information is implicitly associated with the corresponding code that
stems from the gained knowledge [68, 94]; and c) as the code changes, the informa-
tion the developer learns is highly contextualized to the time in which it was discov-
ered or created [13]. We call this information created as a byproduct of authoring or
making sense of developer materials (e.g., code, web resources, documentation, etc.)
meta-information.

In software development, one of the most ubiquitous and well-known meta-
information types are code comments. Often created as a way of keeping track of
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bugs [155] and open to-do items [153, 154], documenting code [142], or informal ver-
sioning of code [75], code comments can serve as rich information about what a de-
veloper is doing when managed with tooling [161]. Other forms of meta-information
about code include Git commit messages, code documentation, code versions, and
so on. The act of developing software produces a vast and dense information land-
scape comprised of these various forms of meta-information. Meta-information also
exists in other information authoring domains such as Microsoft Word or Google
Docs comments.

In this thesis, I1 explore developing software systems to capture and present
programming-related meta-information to assist in overcoming known challenges in
developing software. This work is predicated on the knowledge that many forms of
meta-information are generated at different times during the software development
life cycle and this knowledge, when captured and presented in a comprehensible
manner that leverages the code or other source information within the developer’s
working context, can be useful. By associating this meta-information with code, the
connection between what the developers care about (i.e., the code) and all of this
other information that normally is not captured but can actually answer developers’
implicit questions about code (e.g., visited web pages for where some code came
from, code edit history for when some change occurred, added and removed and
commented out code for reasoning about what a developer has tried, etc.) is an ef-
fective way to keep the developers within their working context, while providing
them the information they need to answer their questions.

The research efforts investigate the claim that meta-information, if properly con-
textualized given its relationship to some code or documentation, can be both useful
to the initial developer and later readers. For the initial author, externalizing their
thoughts and questions as meta-information can help with keeping track of informa-
tion while completing cognitively-demanding software engineering tasks. For later
readers, these traces of the context in which the initial development occurred can
help with answering otherwise unanswerable questions about code and for better
understanding unfamiliar code and learning resources. I also show that code meta-
information can be used, not only for reasoning about some code, but also for evalu-
ating written materials about code, given the connection between meta-information
and its corresponding code. An overarching goal of this thesis is to treat information
about code as a first-class entity, not unlike the code itself, given that the rich history
of code and its development is often the answer to developers’ questions, but is not
typically captured in a systematic or easily explorable manner.

1.1 Overview

There exists a vast space of meta-information about code, with varying levels of cur-
rent tooling support. For example, both large commercial projects and smaller-scale
academic studies have extensively explored code versioning, one form of code meta-
information, including enterprise-level products like GitHub [109] and research projects
such as Variolite [75] or Chronicler [168]. Other areas of code meta-information have
been less explored, including developers’ notes written about code, despite prior
research confirming that this is an activity that developers sometimes perform [98,
102, 104].

1The projects discussed in this thesis were lead by myself but were developed in collaboration
with other researchers – out of respect for their contributions, I will predominately use “we” when
discussing the various projects and papers that comprise this thesis.
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To begin exploring to what extent meta-information can be used to help soft-
ware developers overcome their sensemaking barriers, I began by exploring anno-
tations as a vehicle for associating meta-information with some source information,
thus establishing a shared context between author and later reader. To this end, I
designed the Adamite system, a web browser-based annotation tool specifically de-
signed for annotating software documentation, with features designed to combat
known documentation usage barriers. We chose to focus on documentation, given
the large body of software engineering research discussing particular pain points
that we expected meta-level notes to address. For example, some prior literature
has discussed the challenges in finding pertinent information in documentation and
how this information may be fragmented across multiple locations within the doc-
umentation [4, 37, 163] – to address this barrier, Adamite allows developers to add
multiple text anchor points to their annotation, such that all relevant parts of the
documentation may be connected to one note. Adamite demonstrated the efficacy
of utilizing developer-authored meta-information presented as annotations to assist
later developers in their own programming tasks – developers using Adamite anno-
tations performed significantly better on a programming task.

Adamite was successful in helping later developers utilize meta-information about
code to overcome their information barriers – however, we found that the initial
authors did not experience a significant effect, despite appreciating the annotation
tool. Given the need for more support for the initial author in utilizing their meta-
information and the increased need for information tracking support in the IDE, I
developed Catseye, a Visual Studio Code [110] extension for annotating code. Cat-
seye not only supported adding free-form text to code that was abstracted away
from the original source code (as opposed to code comments) but also supported
other developer information-tracking activities including collecting output data and
lightweight versioning of code, with the option to annotate these other forms of
meta-information. Developers using Catseye performed better when attempting to
keep track of information while debugging some purposefully-confusing code.

In active usage of Catseye, it became clear that the extremely mutable nature of
code can lead to information within the annotations quickly becoming out-of-date.
While Catseye preserves additional meta-information about when the annotation
was created, edited, and what Git version history is relevant to it, if the code changes
such that the annotation content is no longer relevant, there is no way to capture that.
Considering out-of-dateness is a large problem in documentation as well, the insight
that the connection between code and text is both always changing and the accuracy
of the link can be used as a signal for the trustworthiness of the document led to
us extending Catseye for long-form documentation with the system Sodalite. Long-
form documentation can be a useful information source, given that it co-evolves
with the code, but practice shows that does not always happen[93]. Sodalite uses
the connection between code and text and its ability to connect the code to the text
as a metric for how “healthy” the document is in the user’s current programming
context. This system showcases how meta-information can be used for new activities
beyond simply displaying data.

Adamite, Catseye, and Sodalite were all successful in supporting developers in
authoring their own meta-information, but, in their designs, were reliant upon the
programmer to actually write the information. Further, what developers have to
say about code is only one type of meta-information and is incapable of answer-
ing some of the types of questions developers may have, such as when a particular
change was introduced. To expand the types of questions we could support answer-
ing with meta-information and to lower the cost of authoring useful information, we
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developed the Meta-Manager, a Visual Studio Code extension with a supplementary
Google Chrome extension, that automatically listens for and captures editing events
of interest in both the editor and the browser. Some editing events of interest occur
within the editor including copy-pastes between code patches, which may inform
where some code came from and when, and code commenting, which may show
the author trying different solutions or the author adding or changing documenta-
tion. Other edits of interest occur in the web browser – we are particularly interested
in copy-pastes from the browser (e.g., code examples taken from official documenta-
tion, ChatGPT code snippets, or answers from Stack Overflow posts) into the editor,
which may inform why some code is written the way it is, given relevant Google
Chrome searches and/or visited web page(s). AI-generated code from ChatGPT, in
particular, contains a rich collection of interesting additional meta-information about
the development of the code, such as the initial query and chat title, which may in-
form what the developer’s original intent was. Indeed, in our study developers
were able to use the Meta-Manager to answer otherwise unanswerable questions
about code using this rich version history, with insights about AI-generated code
presented as code meta-information being particularly valued by participants.

While the meta-information I have built systems to capture, organize, and use
has been useful for helping developers both keep track of their own information
and answer questions about other developers’ work, I believe this information will
only become more important as software engineering tasks move further away from
simply writing code and towards usage of AI-generated code. I envision future soft-
ware engineers will spend more of their time designing and prompting AI tools to
write code, then integrating and reviewing this code. All of these activities are likely
to produce new meta information that can answer new classes of questions develop-
ers may have about this AI-generated code. For example, a developer may wonder
whether or not the code is AI-generated, what the original prompt was to produce
the code, how the code and prompt evolved over time, what has happened since
this code’s introduction, and so on — all in service of understanding the rationale
behind the code and how their planned contributions will need to be designed in or-
der to work in harmony with this code while retaining the original intent. I propose
extending the Meta-Manager and my other systems to work in this new paradigm
through integrating the systems to capture even more of developers’ generated code
meta-information.

1.2 Expected Contributions

The series of work discussed in this thesis explores the utility of supporting devel-
opers in both authoring and utilizing meta-information to better make sense of code
and documentation. Specifically, the systems provide platforms for authoring and
sharing useful and contextualized information about code (Adamite, Catseye, So-
dalite), unify various forms of meta-information into one platform with a single in-
teraction method (Catseye, Meta-Manager), and demonstrate how meta-information
may be used to overcome known barriers in documentation usage and answer long-
standing, hard-to-answer questions about code (Adamite, Sodalite, Meta-Manager).

Thus far, my work has made the following contributions:

• A review of literature around developer information needs, systems devel-
oped to support some of these needs, and how meta-information about code
has or can be used to combat these challenges (chapter 2).
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• Identifying that short, easy-to-author notes, when attached to programming-
related documents including code and documentation, can address known
challenges in information tracking and usage (chapters 3 and 4).

• Adamite, an annotation system designed with specific features to use meta-
information as annotations on documentation to overcome known barriers in
using software documentation [65] (chapter 3).

• Evidence that developers’ notes can be useful for other developers when prop-
erly presented given the implicit context communicated through annotated
text (chapter 3).

• Catseye, a code annotation system, with features to help a developer keep track
of code-related meta-information using a unified annotating interaction [68]
(chapter 4).

• A documentation authoring and maintenance system, Sodalite, that utilizes
code meta-information to support developers in assessing the validity of docu-
mentation and finding appropriate parts of the code to document [67] (chapter
5).

• A system, Meta-Manager, that can collect, index and store a larger collection of
code editing and provenance meta-information that has never previously been
collected at scale for answering otherwise unanswerable questions about code
history [66] (chapter 6).

• A series of lab studies showcasing the usability and utility of these tools in
supporting developers’ varied information needs in different contexts.

To complete this thesis, I plan to make the following contributions:

• A prototype system that incorporates and unifies all of the types of meta-
information the prior systems supported, while supporting new forms of meta-
information, to assist developers in answering a new class of questions about
code.

• An evaluation of the prototype system that assesses its ability in supporting
developers in their sensemaking of code.





7

Chapter 2

Background and Related Work

Developers are tasked with managing many different types of information when
both authoring and making sense of code. In the following sections, I discuss prior
literature about how developers make sense of code, tooling support for that pro-
cess, meta-information about code (including documentation), and prior systems to
support the creation and management of some of these types of meta-information.

2.1 Making Sense of Code

Researchers in both human-computer interaction (HCI) and Software Engineering
have extensively studied how developers make sense of or comprehend code [18, 20,
40, 43, 83, 85, 86, 87, 89, 104, 138, 139, 144]. These studies are typically situated in the
context of understanding unfamiliar code [40, 83, 89, 104, 139], which is a common
and significant challenge for developers [115]. For example, developers need to un-
derstand unfamiliar code when learning a new API [39, 42, 43, 69, 98, 115, 116, 137],
joining a new code base [14, 36, 74, 135, 151, 162], adapting code from online sources
[10, 20, 98, 117], and so on. Some of the challenges developers must overcome when
understanding unfamiliar code include maintaining their task awareness [102, 112,
123, 124, 154]; developing mental model of the code [18]; questions, hypotheses, and
facts learned about the code [51, 91, 146]; the codes’ current version and output [75,
92]; and “working set” of code patches [18]. Even when an implementation task is
small or the code is more familiar, developers must continually keep track of these
varied information types for maintaining software to varying degrees of success [82].

2.1.1 Developer Tools

Given the diversity of types of information developers must keep track of, a number
of research tools have focused on supporting these different activities. One challenge
developers experience when making sense of code is navigating through code and
finding and relating code patches of interest (sometimes referred to as the “work-
ing set”) [18, 32]. Researchers have investigated various solutions to ease navi-
gation costs including clustering code patches as “bubbles” [18] or in a dedicated
workspace [1, 32] and augmenting code comments to serve as navigational way
points [54, 153, 154, 161]. Other projects have attempted to ease navigation through
suggesting code patches, such as to assist in fault localization [48, 127, 128] and for
helping newcomers to code projects find where to begin [13, 36]. In all of these cases,
the code patches have a higher-level semantic meaning as to why they are relevant
to the developer – a relationship which is only sometimes made clear given the tool.
All of my tools attempt to make the relationship between this meta-information and
its corresponding code traceable and bi-directional to assist in comprehension and
navigation.
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Other projects have focused on leveraging the large amount of already-written
code and developer resources that exist online to assist in overcoming cognitive bar-
riers incurred when programming. These projects commonly suggest code snippets
taken from documentation [19, 107, 120], open source repositories [159], or question-
answer forums [71, 173], given a developer’s query. The underlying rationale for this
design, namely that developers care about code first and foremost, also drives my
design approaches, but my systems capture other forms of information beyond just
code since code, alone, cannot answer every type of question. Other systems lower
the barrier of foraging for programming-related information on the web through
integrating web-based functionalities (e.g., web search) into the IDE [34, 56]. My
systems, especially the Meta-Manager, attempt to also better connect the activities
that are naturally happening both in the editor and the web browser, but do not
require the user to adopt a new browsing or development environment.

2.2 Meta-Information About Code

2.2.1 Writing About Code

One strategy developers employ when keeping track of information is writing down,
either through code comments or external notes, what they want to keep track of. In
the case of code comments, research has explored what types of information are in
code comments [142, 153, 155, 167], whether the code comments are actually useful
[17, 131, 167], and how these comments are later used [49, 132] and cleaned up [155,
156]. An analysis of 2,000 GitHub projects found 12 distinct categories of comments
developers write and found that information designed for code authors and users
appeared less often than more formal types of documentation, suggesting that de-
velopers are not frequently commenting for their own benefit or these comments are
removed prior to submitting the code to publicly-viewable repositories [142]. Other
meta-information about code that is sometimes included in code comments are links
to where some code originated from, in the case that the code was copy-pasted from
online [9, 57].

Developers also employ note-taking for tracking information about code [33, 98,
102, 104, 123]. These notes are commonly used as memory-aids [33, 98, 123] both
for themselves and for communicating insights to other teammates [29, 104], for
keeping track of useful resources [98], and for keeping track of their progress on a
development task [102, 123]. Notably, these notes often lose their initial utility given
their lack of context, while others are authored with the full expectation that they
will be thrown away [98].

Code development and coordination with a software team commonly results in
the creation of other types of written works. This includes version control system
(VCS) commit and pull request messages [96, 101, 160], computational notebooks
[58, 76, 129, 165, 166], bug reports [16, 133], and code review messages [8, 53, 90,
113, 114, 140]. Developers may also write about their code with the intent of helping
others, whether that be a blog post [121, 122, 125], question-and-answer forum post
[7, 169, 175], or tutorial [58, 60, 125, 158, 164]. Most of these written artifacts suffer
from the same challenges that other written works about code face in that they are
typically abstracted away from the original code context, thus making them difficult
to discover or glean answers from.
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Documentation

Perhaps the most studied type of writing about code is software documentation.
Much prior literature has investigated what information is written in documentation
[61, 103], what the problems are with that information [3, 4, 26, 45, 93, 108, 118,
137, 139, 163], how this documentation is authored [38, 143, 152], and automating
documentation processes to offset authoring costs and standardize the information
present in documentation [2, 55]. Notably, the majority of this documentation work
is in the context of software documentation for end users of a software library, e.g.
API documentation [115]. Slightly less work has focused on documentation created
for other developers working on the same code base, such as internal documentation
about the code base [135, 143] or open source on-boarding files [158], where the
primary goal is to help other developers understand and contribute to the code base.

Once some software documentation is made, researchers have studied how de-
velopers maintain those documents and use that information. In studies of usage,
researchers have identified many problems of documentation that lead to the doc-
umentation being less trustworthy [100], including questions about how up-to-date
the information is [4, 93, 163] and how complete the information is [137, 139]. Main-
taining documentation has also been found to be challenging, with developers re-
porting on the costly time spent on updating documentation [163] and a lack of
clarity on where and how to update the documentation given code changes [50].

2.2.2 Other Meta-Information

Developers keep track of many other types of information that are not or cannot be
written down. One ubiquitous form of meta-information about code is code his-
tory, i.e., code versions across time. Most software engineering utilizes a version
control system (VCS) (e.g., Git) for keeping track of code releases and to make col-
laboration across potentially many different versions of code possible. However,
in between formal check-ins of code, developers have reported a need for keeping
track of their code versions. Whether that be in the context of data science program-
ming where intermittent versions may represent small-scale experiments [59, 75, 76]
or when maintaining a code project and trying different solutions for fixing a bug
[172] or adapting a code example [20], developers employ a variety of methods for
keeping track of these intermittent versions such as commenting out the code [75].
Both these less formal intermittent code versions and committed code versions can
serve as meta-information about the “current” version of the code in service of, e.g.,
understanding how some code evolved over time.

Another form of code meta-information closely related to code versions are out-
puts generated by code. Outputs may be as simple as a console log message or as
complex as a full graphical user interface. In either case, developers must often keep
track of how these outputs change with respect to their code edits [75]. This may
happen when the developer must revert to a prior, functional version after a bug
is introduced or to compare differences in outputs with the intention of choosing an
optimal version [172]. Some tools have been developed to keep track of outputs with
respect to the code versions that generated them [76], while others have focused on
making the output itself more useful through improved interaction and flexibility
[73].

In our work, we design tooling approaches to support the authoring and man-
agement of programming-related meta-information for sense making. Whether this
meta-information is in service of externalizing and tracking some thought about



10 Chapter 2. Background and Related Work

code, an intermittent code version, a piece of useful documentation, or the history
of a function, the proposed work will unify all of these forms of normally-siloed and
de-contextualized information pieces into a singular system.
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Chapter 3

Adamite: Meta-Information as
Annotations on Documentation

This chapter is adapted from my paper:

[65] Amber Horvath, Michael Xieyang Liu, River Hendriksen, Connor Shan-
non, Emma Paterson, Kazi Jawad, Andrew Macvean, and Brad A. Myers.
“Understanding How Programmers Can Use Annotations on Documenta-
tion”. In CHI Conference on Human Factors in Computing Systems (CHI ’22),
April 29-May 5, 2022, New Orleans, LA, USA. ACM, New York, NY, USA, 16
pages.

3.1 Overview

Application programming interfaces (APIs), including libraries, frameworks, toolk-
its, and software development kits (SDKs), are used by virtually all code [115]. Pro-
grammers at all levels must continually learn and use new APIs in order to com-
plete any project of significant size or complexity [42]. In learning APIs, develop-
ers depend upon the documentation, including tutorials, reference documentation,
and code examples, along with question-and-answer sites like Stack Overflow [93].
However, developer documentation is known to be problematic with common and
significant issues including incompleteness of information, out-of-date information,
and fragmented information [3, 4, 137, 163].

In this chapter, we investigate how developer-authored meta-information about
documentation, presented as annotations, may help developers overcome some of
these barriers. We hypothesized that the highly-contextualized nature of developers
notes when anchored to text within the documentation, can help the initial annotator
better utilize their notes about documentation. Further, when given proper tooling
support, this information can be leveraged by later users of the documentation to
overcome their documentation barriers.

To explore the concept of annotations as a way of supporting short notes on doc-
umentation that are useful both for the author and for later readers, we started with
a preliminary lab study that explored the concept of annotations on documenta-
tion using an off-the-shelf Chrome extension, Hypothesis [72], and then we per-
formed a corpus analysis of annotations on documentation created using Hypothe-
sis. Given what we learned from these preliminary analyses, we developed our own
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documentation-specific annotation tool, Adamite1. Next, we ran a two-pass user
study where we explored the kinds of annotations developers authored when learn-
ing a new API and then had another set of developers read those annotations while
attempting to complete the same API learning task using Adamite. We compared
these participants to a control condition which had no annotations. From these stud-
ies, we provide evidence that annotations are useful in helping developers overcome
documentation-related issues.

3.2 Preliminary Studies and Design Goals

3.2.1 Lab Study with Hypothesis

To explore the efficacy of annotations as a useful learning device for API learning
tasks using documentation, we ran a preliminary study where people learned an
unfamiliar API while using Hypothesis [72]. In summary, we found that develop-
ers are able to use annotations in the ways we envisioned, but that annotation au-
thoring and reading could be improved for developers by adding additional tooling
features.

Study Design

The preliminary study had two distinct phases: the first phase was focused on un-
derstanding how developers author annotations during an API learning task, while
the second phase focused on how developers read annotations that are already at-
tached to documentation. In each phase, the 4 participants completed an API learn-
ing task adapted from my previous study [64] that required them to forage through
API documentation to complete a programming task.

In the authoring condition, participants were given the documentation with no
annotations, and instructed to add annotations when they learned anything useful,
had questions about the content in the documentation, or had any other thoughts
about the documentation. In the reading condition, participants were given the same
documentation, but with annotations added. The annotations included annotations
authored by the first author that were designed to be helpful for this task given what
developers were confused about in a previous study [64], and other annotations that
were designed to be “distracting” to simulate the more realistic case where not all
annotations would be relevant. In total, we had 23 “helpful” annotations and 44
“distractor” annotations, totalling 67 unique annotations.

Results

In the authoring condition, the 4 participants together authored a total of 19 unique
annotations. Each participant, on average, authored 4.75 annotations, with annota-
tions averaging 4.41 words. Hypothesis also allows users to simply highlight a piece
of text on a web page without adding any text content to the anchor (hereafter re-
ferred to as “highlight” annotations) — out of the 19 unique annotations authored,
5 were these simple highlight annotations.

Many of the annotations that participants created showed a part of the docu-
mentation that illustrated how to achieve some part of their current task. Other

1Adamite stands for Annotated Documentation Allows for More Information Transfer across
Engineers and is a green mineral.
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annotations served as task reminders or open questions the author had about the
documentation content.

In our analyses, we also found that participants had many questions about the
documentation (on average, 10.8 questions per participant) which were not anno-
tated. While trying to answer these questions, participants routinely encountered
more confusing information, resulting in them losing track of their original ques-
tions. Given this confusion, participants struggled to answer their questions, with
only 29% of questions definitely answered. Notably, Hypothesis does not have any
way of marking or following up on a question.

From this initial preliminary study, we found evidence that annotations may en-
hance the original text. Additionally, we found support for different types of infor-
mation needs that are not directly supported by Hypothesis, such as keeping track
of open questions. In the reading condition, we also learned through our “distrac-
tor” annotations that annotations need to be easy to skim and relatively short in
length and more support for discovering annotations, either through more anchor
text points or filter and search.

3.2.2 Corpus Analysis of Hypothesis Annotations

In order to supplement our preliminary study, we queried Hypothesis’s API to get a
list of public annotations which developers have already made on official API docu-
mentation including public APIs from Google, Microsoft, Oracle, and Mozilla, along
with other developer learning resources including Stack Overflow, W3Schools, and
GitHub.

Across these sites, we found 1,995 public annotations. Of the 1,995 annotations,
196 were questions about the content of the documentation, and 995 were highlight
type annotations. Of the 1,000 annotations with content, 16 of the annotations were
to-do items the author wanted to follow up on, 43 pointed out problematic aspects
of and potential improvements to the documentation, and 79 were created to specif-
ically call out important or useful parts of the documentation2. These annotations
were authored by 298 unique users (average = 6.694 annotations per user, minimum
= 1, maximum = 677) across 1,143 unique web pages. The authored annotations
were, on average, 8.79 words long and were anchored to text that averaged 12.35
words.

We believe some of the 1,000 annotations that contained content could benefit
other developers with additional tooling support. For example, a Hypothesis user
annotated the text “you can pass the path to the serve account key in code” and
asked how they can do that. This user then later annotated a code example show-
ing how to achieve this behavior at a different point in the documentation and said
“finally found it”. While these two annotations depend upon one another in order
to make sense and point to different parts of the documentation, Hypothesis does
not allow for these annotations to reference one another, suggesting a need for bet-
ter tooling support for multiple anchors for annotations and keeping track of open
questions.

These annotations provide support for our claim that some developers are will-
ing to write annotations and attach them to documentation, as they are already
doing this. Moreover, the annotations we found follow some of the patterns we
identified in our preliminary study, such as open questions and issues. However,

2These counts were generated by counting instances of phrases like “incorrect” and “todo” in the
annotation content, then manually reviewing all of the annotations that contained those phrases to
determine if they were actually e.g., an issue or todo item.
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Hypothesis’s general-purpose annotation system does not have enough support to
effectively utilize these annotations.

3.2.3 Design Goals

Given prior literature and what we discovered in our preliminary studies, we devel-
oped the following design goals for our system:

• Support developer note taking through annotations. Developers sometimes
take notes on what they have learned [98, 102, 104, 123], even when using
documentation (Section 3.2.2).

• Support developers’ question-asking and answering. Developers have many
questions about unfamiliar APIs and their documentation ([42, 146], Sections
3.2.1 and 3.2.2).

• Support diagnosing documentation issues. Developers commonly identify
documentation issues including obsoleteness [4, 163], incorrectness ([4, 163],
Section 3.2.2), incompleteness [4, 27, 37, 136, 137, 163, 176] and ambiguities [4,
136, 137, 163] but have no way of sharing that information.

• Support developer task-tracking. Developers take notes on open tasks that
they must work on, especially when interrupted [123], and occasionally take
notes on tasks they must complete that are related to parts of the documenta-
tion they are reading (Section 3.2.2).

• Support connecting related parts of the documentation. Developers need to
build up a mental representation of an API [69, 80, 98] and connect related
resources [4, 37, 163].

• Support better discovery of important parts of the documentation. Develop-
ers, especially selective [21] and opportunistic [20] learners, want to quickly
find information that is relevant to them ([108], Section 3.2.1).

3.3 Overview of Adamite

We designed Adamite, a browser extension, specifically to help developers keep
track of important information, organize their learning, and share their insights with
one another. To create an annotation, a developer, who we call the annotation “au-
thor” simply needs to open the Adamite sidebar, highlight some text on the web
page (called the “anchor”), select the type of annotation, optionally add text to a
rich text editor that appears in the sidebar, and click on the publish button. Once
published, the text that the user annotated will be highlighted on the web page and
the annotation will appear in the Adamite sidebar – see Figure 3.1. Users may also
add tags and additional anchors to the annotation. Annotations can be published
publicly, privately, or to a group of Adamite users. Once an annotation has been
published, it may be replied to by others, and edited or deleted by the original au-
thor. Clicking on the anchor icon on the annotation will scroll to the part of the web
page the annotation is anchored to (or will open a new tab if the anchor is on a dif-
ferent page) – conversely, clicking on the highlighted text on the web page will scroll
to the corresponding annotation in the sidebar.
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FIGURE 3.1: Adamite’s sidebar (on the right) open on an already-annotated web page in the browser.
(1) shows the pop-up for when a user selects some text – at this point they can begin creating a new
annotation by selecting an annotation type. (2) shows the menu of question annotation prompts users
can choose from. (3) shows a published normal annotation with two anchors. (4) shows how the
annotated text appears on the web page. (5) shows Adamite’s search and filter pane. (6) shows the
pinned annotation list button.

One goal of Adamite is helping developers structure and share what they learn
in the documentation in a way that is useful both to themselves and for later devel-
opers. To achieve this, we developed annotation types. In addition to the typical
“normal” (with a user-written comment) and “highlight” (just the anchor and no
comment) annotations, Adamite supports question, issue, and to-do annotations.
We chose these three annotation types to assist developers in keeping track of their
questions, to point out and possibly attempt to rectify issues found in the documen-
tation, and to help them keep track of their tasks. Issue annotations have a button
intended to alert key stakeholders, such as the documentation writers, of the de-
scribed problem with the documentation. Question annotations are stateful, mean-
ing unanswered annotations will stay available until the developer either marks the
question as “answered” (at which point the answer will be appended to the original
question), or marks the question as “no longer relevant”. To-do annotations are also
always available until they are marked as complete.

Question and to-do annotations are always available using Adamite’s “pinning”
mechanism. Most annotation systems only show annotations that are on the user’s
current web page. However, considering that documentation may be spread across
many pages and developers may visit many web pages when attempting to com-
plete a programming task, we added in the ability to pin an annotation, such that it
is always available in a list at the top of the sidebar. To-do and question annotations
are pinned by default, since the developer is unlikely to find their answer or finish
their task while they are on the same web page.

Given that a common documentation problem is fragmented information, we
found a need to support multiple anchors for a single annotation. This feature can be
used to connect parts of the documentation that the user feels should be presented
together, or to better contextualize their annotation. Developers may also use an-
chors as a way of collecting multiple parts of the documentation that they feel are
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related to one another given the developer’s task and their evolving understanding
of the API.

For later users of the annotated documentation (who we call annotation “read-
ers,” but can be the same person as the annotation authors), it is likely that not all of
the annotations are relevant to what the developer is trying to do. To help readers
find the most relevant annotations, we support search (using Elasticsearch [44]) and
filters (see Figure 3.1-5). Readers can search across a web page, website, or across
all of Adamite’s annotations and filter on the annotation type, when the annotation
was created, and what tags the author has tagged the annotation with. Readers may
also sort the annotations by their location on the page or by the time at which the
annotation was authored.

3.4 Lab Study

In order to understand the role that annotations play in developers’ documentation
usage while learning a new API and using Adamite, we ran a lab study with three
conditions to understand how developers create and use annotations. Participants in
one condition authored annotations while completing an API learning task, and par-
ticipants in the second condition read these participant-authored annotations. The
third condition was a control condition where participants completed the same API
learning task using just the documentation. The lab study consisted of a training
task, a programming task, and a survey to assess the participant’s background.

3.4.1 Method

Training

Each condition included a training exercise using Tippy, a React library for making
tooltips, and its documentation to either familiarize the participants with Adamite
and its functionality (Adamite conditions) or to familiarize them with thinking aloud
while reading through documentation (control). Participants in the Adamite condi-
tions learned how to create an annotation of each type, reply to an annotation, add
an additional anchor to an existing annotation, search, filter, edit and delete an an-
notation and practiced thinking aloud while performing these tasks. The control
condition practiced thinking aloud when they had a question, found an answer to
their question, and identified an issue in the documentation.

Task

For the task, participants were asked to complete an image aggregation and orga-
nization task using Piling.js (hereafter referred to as “Piling”), a JavaScript library
for handling visualizations [126]. Piling was chosen as it is a relatively small library,
meaning the participants would have adequate time to gain a high-level understand-
ing of the library during a lab study.

The task was to use Piling to take a set of four provided images and render and
sort the images (see Figure 3.2 for the output and detailed steps). The task was
chosen as, despite its apparent simplicity, it requires the participant to learn some
of Piling’s core concepts. Participants were objectively graded upon how many of
the 4 steps they were able to complete correctly. To start, participants were given a
JavaScript file containing comments stating the goal of each step.
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FIGURE 3.2: The correct output for the task. Each number refers to the step number. (1) creates and
renders the 4 images. (2) puts the images in 2 rows. (3) arranges images by a user-defined property
using the arrangeBy method. (4) requires the user to set a label on their data, such that elements with
the same label will have a matching stripe along the bottom of the picture.

In addition to completing the programming task, participants were asked to
think aloud and to pretend as though they were in a small team learning Piling. De-
pendent upon the condition, further instructions differed slightly. Control condition
participants were told that they needed to relay what they had learned to their team-
mates in whatever way they would normally do so, such as note taking. Adamite
authoring participants were instructed to create annotations with any questions or
thoughts they had about the documentation, issues they found in the documenta-
tion, and thoughts they wanted to follow up on and that these annotations would
be shared with their future teammates. Each authoring participant started with an
un-annotated version of the documentation. In the Adamite reading condition, par-
ticipants were given annotated documentation and were told to pretend that the
annotations were created by a teammate who had already learned Piling and were
instructed to speak aloud when an annotation was helpful or unhelpful. Participants
in the reading condition were not required (but were allowed) to create annotations
or interact with the annotations present in the documentation.

Annotation Selection

In choosing annotations to include in the reading condition, two researchers sepa-
rately coded each annotation created during the authoring condition for whether or
not to include it. Inclusion criteria included identifying matching annotations across
participants to select which one was the clearest, most appropriately anchored, and
concise – qualities informed by our preliminary study and others [5]. The predom-
inant cause for the majority of annotations to be removed was redundancy – par-
ticipants commonly annotated information related to the first two steps of the task
(see Figure 3.3)3. We also excluded annotations that the participant later stated were
incorrect or that the participant deleted, and annotations that lacked sufficient con-
text (including all highlight annotations). Finally, we omitted to-do annotations, as
they are designed only for the original author’s usage. The researchers had a 71%
agreement – in the cases where the researchers disagreed, they had a discussion un-
til agreement was reached. Through this process, we were left with 31 annotations.

3Note that this is due to being a lab study – in a realistic situation, people would likely read an
existing annotation and not create a redundant one.
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FIGURE 3.3: The number of annotations removed for each reason, along with the annotations kept, out
of the 91 total annotations. 2 highlight annotations were retained as the users edited them to add text,
making them semantically identical to normal annotations.

One additional annotation was added by the first author to assist with the final step
of the task, as no participant in either the authoring condition or control condition
got to that point of the task. After this process, we had 32 annotations, with 18 nor-
mal type annotations, 10 issue type annotations, and 4 question annotations, 3 of
which were answered4. We did not omit any annotations due to relevance or cor-
rectness, since we wanted to leave in anything that at least one participant wanted
to comment on to be more realistic.

Participants

We recruited 31 participants using departmental mailing lists at our university and
social media. One participant could not finish the study due to technical difficul-
ties, so we only report on the 30 who completed the whole study. Each condition
included 10 participants and were randomly assigned between the authoring and
control condition – the reading condition occurred after the other two conditions so
all remaining participants who signed up were assigned to that condition.

All of the participants were required to have some amount of experience using
JavaScript, not to have used Piling before, and to have been programming for at least
1 year (actual minimum: 1 year, maximum: 20 years, average: 7.98 years). The par-
ticipants’ professions included graduate students in computer science-related fields,
user experience researchers with a computer science background, and professional
programmers. The gender breakdown of our study consisted of 19 men, 9 women,
and 1 non-binary person. Participants across each condition had a similar amount
of JavaScript experience and years of programming experience.

All study sessions were completed remotely using video conferencing software.
Participants were audio and video recorded, and each participant’s session took ap-
proximately 90 minutes, with 45 minutes of that time allotted for the programming

4We included one unanswered question to account for the realistic situation that not all questions
would be answered and because the question asked was a common question among participants –
notably, answering this question was not necessary for succeeding in the task.
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FIGURE 3.4: The difference between reading and each of the other two conditions is statistically signif-
icant, but the difference between control and authoring is not. The average number of steps completed
is in the center of each box.

task. Each participant was given access to the Piling documentation and a Code-
Sandbox.io [22] project which had JavaScipt, HTML, and CSS files with Piling in-
stalled and a photo of the output, along with written-out steps for the task. Partici-
pants were compensated $25 for their time, save for 2 participants who elected not
to be compensated.

Analysis Methods

Across all of the conditions, we objectively graded participants on whether or not
they succeeded in completing each of the 4 steps outlined in the task instructions.
In the Adamite conditions, we analyzed the video recordings and log data to count
how many annotations participants authored, and how often they interacted with
Adamite and its annotations.

We qualitatively coded the annotations developers made in order to character-
ize developers’ annotating strategies. Using an open coding method, two authors
coded the normal type annotations by independently coding each annotation and
refining categories based upon their individual codes. For issue and question type
annotations, we coded the annotations dependent upon what issue in a list of com-
monly defined issues [4] was identified in the annotation (issue type) or what issue
caused the participant’s confusion with issue types including: incompleteness, frag-
mentation, incorrectness, poor code example, and ambiguity. Two of the authors in-
dependently coded the annotations and reached 75% agreement when coding the is-
sue annotations and 73% for the question annotations – remaining annotations were
discussed until agreement was achieved.

In the annotation reading condition, we analyzed how often participants said
that an annotation was helpful or unhelpful in order to better understand what an-
notations succeeded in helping participants. We calculated average helpfulness by
how many participants said an annotation was helpful and dividing by how many
participants encountered the annotation. We ranked annotations from most helpful
to least helpful by how many participants said the annotation was helpful subtracted
by how many said it was unhelpful.

In the control condition, we kept track of whether and how the participant chose
to relay their information to their teammates. We also referenced the auto-generated
transcripts to find and count whenever a participant stated a question.



20 Chapter 3. Adamite: Meta-Information as Annotations on Documentation

FIGURE 3.5: The proportions for each type of the annotations made in the authoring condition (out of
91), with the exact count for each type above the bar and the proportion in parentheses.

3.4.2 Results

On average, participants in the control completed 1.5 of the 4 steps, authoring par-
ticipants completed 1.4 steps, and the reading condition completed 2.5 steps (see
Figure 3.4). Participants in the reading condition performed significantly better than
participants in the control and authoring conditions (paired T-test versus control,
p < .01, paired T-test versus authoring, p < .01). This provides evidence annotated
documentation helps developers in using API documentation.

In the control condition, 1 participant chose to take notes in a Google Doc and
1 participant made comments in their code as notes for their future teammates. 2
participants spoke aloud when they had a thought that they would want to share as
a note to their teammates, but did not actually write any notes down. The remaining
6 control participants did not take notes or verbally indicate the intent to take notes
at any point during the study. This suggests that without a mechanism for external-
izing their thoughts, these 6 participants may not have been able to actually share
what they learned and only 2 participants had any artifact to share with their future
teammates.

How Developers Annotate Documentation

The 10 participants in the annotation authoring condition created 91 annotations
across all five of the annotation types (see Figures 3.5 and 3.6). The annotations that
participants authored were, on average, relatively short in length at 9.31 words (min-
imum = 0, maximum = 34, median = 8). On average, each participant authored 9.1
annotations (median = 8, standard deviation = 4.094, minimum = 5, maximum = 18),
with the most used annotation type being the normal-type at 32 authored annota-
tions (35.1%). 2 participants in the annotation reading condition created 6 annotations
(3 normal, 2 highlights, and 1 question), resulting in 97 annotations across all con-
ditions. The rest of the analyses just look at the 91 annotations from the authoring
condition.

Considering the large amount of normal type annotations and how normal an-
notations can contain nearly any type of information, we sought to characterize the
content of these annotations. Through open coding, two coders defined 5 categories
– “note to self” in which the participant made a note about the documentation’s con-
tent that was primarily for themselves, “explanation of code” in which the partici-
pant tried to better explain what a particular code example was doing, “hypothesis”
in which the participant guesses about how some part of Piling works, “important
to task” in which the participant highlights a particular part of the documentation
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as critical for one of the steps of the task, and “other” for any annotations that did
not fit into the previous categories. With this categorization, we had 12 “note to self”
annotations, 10 “explanations of code”, 7 “hypotheses”, 2 “important to task” anno-
tations, and 1 “other” annotation. The 1 “other” annotation was an annotation with
no content that was created purely as a navigational aid. Participants commonly
used “note to self” to keep track of their information and contextualize it to their
open task, and used “hypotheses” as ephemeral thoughts about the documentation
– these activities are more directly supported in our tool, Catseye, within the context
of the code.

Unexplained or poorly explained code examples are a frequent problem in doc-
umentation [4, 163] and Piling was no exception, so our participants attempted to
explain some of the code examples and, sometimes, contextualize them to the goals
of the task. The most helpful and second most helpful annotations are both expla-
nations of code with the most helpful explaining how to use Piling’s row property
to create columns, and the second most helpful annotation explaining how the code
example for piling.arrangeBy works and how to adapt the code example to work
using a callback function – both necessary steps for completing the task. Further, in
our qualitative coding of issue and question annotations, poorly explained code ex-
amples were the most common type of identified issue, suggesting that participants
valued the ability to express lightweight thoughts about code in context.

Developers also had many questions that relate to documentation issues reported
by prior studies [4, 163]. Ambiguity and poor code examples were the source of
the majority of developers’ questions, which matches the findings reported in [163],
with ambiguity, in particular, standing out as a common and severe blocker for de-
velopers. Ambiguity and fragmentation issues also resulted in questions that were
difficult for annotation authors to answer, with only 33% of questions caused by am-
biguity and 33% of questions caused by fragmentation being answered. Considering
some participants were able to solve fragmentation issues using multiple anchors
with Adamite, this suggests these developers’ questions may have been answered
if they had been presented with these annotations. In fact, in the Adamite reading
condition, 2 participants had their issue of aggregateColorMap not compiling solved
by an annotation that used multiple anchors to link to the part of the documentation
that defines aggregateColorMap.

Considering roughly half of the authored normal annotations are primarily ben-
eficial to the original author (i.e., notes to self and hypotheses) and every participant
made a personal annotation (i.e., notes to self, hypotheses, to-do’s, and highlights),
we find evidence that annotating is an effective mechanism for externalizing infor-
mation and helpful for the author. Further, all participants revisited at least one
of their annotations at least once (min = 1, max = 36, average = 10.225 revisits per
participant), suggesting participants were able to get some utility out of their anno-
tations. We also included 6 notes to self and 3 hypotheses in the reading condition to
see whether these thoughts could benefit other developers. Notes to self, in particu-
lar, were the most revisited type of annotation by their authors, and participants, on
average, revisited these notes 1.8 more times – more than any other annotation type
or coded normal annotation types.

Some of these annotations were used in conjunction with Adamite’s other novel
features, resulting in the annotations being more useful. The most commonly revis-
ited annotation, a note to self, had 5 anchors with each anchor describing a necessary
step in order to properly instantiate the piling object. The participant pinned this
annotation such that they could reference the anchor steps in their CodeSandbox
project (which was open in a separate Chrome tab) – this annotation was also useful
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FIGURE 3.6: Which participants made what type of annotation. A1 through A10 refer to the 10 au-
thoring condition participants. R1 and R2 are the two reading condition participants who created
annotations.

in the annotation reading condition with one participant replying to thank the au-
thor. This shows that Adamite’s features not only support the creation of lightweight
notes but also allow developers to utilize their and other people’s notes in context.

In terms of task completion, participants in the annotation authoring condition
on average completed 1.4 steps out of the 4 steps required to complete the task (stan-
dard deviation = 0.69, minimum = 1, maximum = 3, median = 1) (see Figure 3.4).
There is no statistically significant difference between the control condition comple-
tion rate of 1.5 and the 1.4 in the authoring condition (two-tailed T-test, p = 0.78), sug-
gesting that annotating the documentation, while not increasing their performance,
also did not require so much overhead that participants were unable to complete the
task in the same amount of time as if they had not been annotating. Moreover, con-
sidering how often developers’ revisited their notes, specifically their “notes to self”,
this suggests authors were able to successfully use annotations as an externalization
of their thoughts.

How Developers Use Annotated Documentation

Participants in the reading condition read, on average, 23.7 annotations (including
revisiting annotations they had already read, with 72% of annotations read more
than once), and read, on average, 15.6 unique annotations. Participants found 45%
of the annotations that they encountered helpful, and only 8% not helpful. The top-
performing 6 participants in the reading condition also reported the highest propor-
tion of helpful annotations, suggesting that their success may be attributed to the
successful use of the annotations.

Of the 32 annotations included in the reading condition, the most helpful type
of annotation for readers of the documentation was answered question annotations,
with, on average, 54% of participants who encountered them stating they were help-
ful. Normal-type annotations were the second-most helpful type of annotation (avg.
47% helpful) and issue type annotations helped on average 35% of the time. Some
issue type annotations were more helpful than other issue annotations including
annotations that identified poor code examples, which were helpful, on average,
45% of the time. Even though these issue annotations did not necessarily suggest
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a solution, they did work in confirming the participant’s suspicions that the docu-
mentation itself was incorrect and not the participant’s implementation. Sometimes,
participants found useful annotations through search – participants searched a total
of 78 times and 11 of these searches returned an annotation that the user immedi-
ately found useful.

Participants especially appreciated the normal type annotations that were ex-
planations of code, with participants finding them helpful 63% of the time. Code
explanations typically elucidated what a code example was illustrating or explained
how to adapt a particular code example for the purposes of the task. “Notes to self”
were also surprisingly useful, with participants finding them helpful 53% of the time
– given that the notes to self typically represented a thought or reminder the devel-
oper had about the documentation while completing the task, these results suggest
that the participants in the reading study had similar thoughts about the documen-
tation. Conversely, hypotheses were not very helpful, with only 16% of participants
finding them helpful – given the uncertainty of these annotations, participants may
have found them less trustworthy. These results suggest that explanations of code
and developers’ personal notes can be useful if they are framed in a knowledgeable
fashion, while hypotheses are more useful for the original author.

3.5 Discussion

Our results suggest that annotated documentation is useful for documentation read-
ers in overcoming some of the known barriers of documentation and that the act
of annotating when learning a new API can help developers keep track of their
thoughts and open questions. Creating annotations was also useful to the author
as a form of self-explanation, which has been shown to be useful for learning in
prior studies [23, 30], and these self-explanations, or “notes to self”, were useful to
others. The novel features of Adamite, especially types, multiple anchors, and pin-
ning, helped annotation authors better structure and contextualize their information
and helped annotation readers find relevant information.

In the creation and evaluation of Adamite, we sought to explore to what extent
annotations may help annotation authors and readers in overcoming previously-
reported shortcomings of documentation. Through this exploration, we have evi-
dence developers are able to identify documentation issues using annotations and
are able to answer some of their documentation questions. Specifically, our partic-
ipants were able to identify “poor code examples”, “incompleteness” and “ambi-
guity” issues, two of the largest blockers when using documentation [163]. Other
developers can make use of these answered questions and issue annotations, with
answered questions as the most helpful annotation type and explained code exam-
ples also helping annotation readers. However, annotations cannot solve every doc-
umentation issue. If the API and its documentation are updated, the annotations
may go out of date, at which point they may be more harmful than helpful. While
our algorithm attempts to reattach the annotation to its anchor point, the annota-
tion content will not change to reflect that reattachment, at which point the content
may be incorrect. This tension when updating content between developer-authored
meta-information and the original source it is connected to is further explored with
our tools Catseye and, in particular, Sodalite.
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Chapter 4

Catseye: Meta-Information for
Sensemaking About Code

This chapter is adapted from my paper:

[68] Amber Horvath, Brad A. Myers, Andrew Macvean, and Imtiaz Rahman.
2022. “Using Annotations for Sensemaking About Code”. In The 35th Annual
ACM Symposium on User Interface Software and Technology (UIST ’22), October
29-November 2, 2022, Bend, OR, USA. ACM, New York, NY, USA, 16 pages.

4.1 Overview

In our previous tool, Adamite, we found evidence that developer meta-information,
in the form of annotations, was useful in overcoming known barriers in documenta-
tion usage. In particular, later users of the documentation experienced a significant
increase in task completion. However, the initial authors did not experience a sig-
nificant effect. Despite this, we had evidence that developers did appreciate the
ability to annotate programming-related documents with their thoughts, questions,
and hypotheses that they wanted to keep track of. With this in mind, we wanted to
explore how to make annotating more beneficial for the initial user.

One context in which keeping track of information is possibly even more im-
portant than in the context of using developer documentation is when actively pro-
gramming. Prior work has discussed some of the challenges developers must face
when making sense of code. A developer must maintain their own task context
[112], while also keeping track of the various questions [146] and hypotheses [106]
they have about the code, the answers they find to these questions [91, 146], their
code locations of interest (commonly referred to as the “working set” [18, 32, 82,
174]), the different versions of the code they try [75, 172], and how those various
versions produce differing outputs [75]. Strategies for keeping track of these various
forms of information are rarely successful and are often siloed into different tools or
approaches, given the different types of information to track.

In this chapter, we explore the concept of generalizing annotating for capturing
different forms of meta-information using a singular, unified mechanism in the IDE
with our tool Catseye. Catseye adopts and extends many of the features introduced
in Adamite, such as multiple anchors and pinning, while adding in support for
programming-specific information tracking, including lightweight versioning and
output capturing. Catseye has advantages over other forms of information track-
ing commonly employed by developers, such as code comments for tracking open
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FIGURE 4.1: Catseye as it appears in Visual Studio Code. (1) shows how the annotation appears in the
editor – the code is highlighted with a light gray box and, when hovered over, the annotation content
appears in the pop-up with any other documentation. Clicking on the “Show Annotation” button
opens and brings into focus the Catseye pane if it is not already visible, then scrolls to the annotation.
(2) shows the annotation location(s) in the scroll bar gutter in a light green. (3) is a search bar for
searching across the user’s annotations. (4) is the Catseye pane – the pane is segmented into sections
corresponding to the annotations’ locations in the file system, with the “Current File” section currently
open. (5) is an annotation – the top of the annotation shows the author and creation time information
on the left, and buttons for various actions. (6) shows the two code anchors for the annotation. (7)
is the content the user added as an annotation to the code snippets. (8) is a snapshot of the code at a
previous version with a comment added by the author about this version of the code. (9) is a reply to
the original annotation.

tasks [153], by both allowing for a higher level of specificity through anchoring the
meta-information to the relevant code yet abstracting that information away from
the source code, such that it does not clutter the source with potentially erroneous
information. Our lab study suggests that Catseye did assist in information track-
ing, with participants using Catseye performing better on a debugging task when
compared to participants using their own information tracking strategies.

4.2 Catseye

4.2.1 Overview of Catseye

We developed Catseye– an extension for the Visual Studio Code editor [110] – that
allows developers to keep track of their tasks, open questions and hypotheses, an-
swers to these questions, and more in the form of annotations attached to one or
more snippets of code (see Figure 4.1). We chose to adopt some of the features of
our earlier Adamite system [65] for Catseye, given Adamite’s focus on supporting
developers’ information tracking on the web through annotations. Adamite showed
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FIGURE 4.2: An annotation made by a participant in our study. (1), (2), and (3) show the 3 different
code anchors the participant created across multiple files, with the first anchor (“gameloader.js”) as
the site of their question, and the remaining two anchors and reply (4) answering their question. The
annotation was pinned.

the benefits of multiple anchors and pinning, and we expected that these features
would help with code comprehension issues, such as managing a working set. We
also introduced novel annotation features for Catseye, such as code snapshots for
micro-versioning, to help with other information tracking needs.

To create an annotation, a developer selects a snippet of code in the editor and,
using a keyboard shortcut, the context menu, or Visual Studio Code’s Command
Palette, indicates that they want to create an annotation. The Catseye pane will up-
date with a preview of the annotation, where the developer can add text and choose
whether or not to pin the annotation. Once the annotation has been created, it will
appear in the Catseye pane and the editor will update with a light gray box around
the annotated code at the anchor point (see Figure 4.1 at 1). With an annotation, a
developer can click on it to jump to the anchor point in the code (and vice versa),
build upon it through adding additional code snippets as “anchors”, capture ver-
sions of the code and the code output, “pin” the annotation for easier navigation,
“reply” to the annotation with more information, search for the annotation, export
the annotation as a code comment, and edit and/or delete the annotation.

Given our high-level goal of creating an annotation system where annotations
serve as ephemeral notes when making sense of code, we explicitly designed anno-
tations to function similarly to Google Doc comments or Microsoft Word comments.
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Annotations in Catseye move around with the code as the code and its location in
the editor change over time, and the annotations appear in their own designated
area that is detached from the developer’s editor. We chose this design metaphor
to emphasize the point that annotations are not code comments – they are separate,
meta-level notes that are attached to but abstracted from the developer’s working
context. Annotation anchors update whenever the developer edits their code, and
the copy of the code at the anchor that is shown in the annotation (Figure 4.1 at 6) is
updated whenever the developer saves their code.

Annotation code anchors can also be used as navigational aids. The developer
can click on the code or the file path in the annotation (Figure 4.1 at 6 and Figure
4.2 at 1) which will open that file in a new tab if it is not already open, bring that
file’s tab to the front if it was not already, and scroll to the code’s location in the
file. Additional navigational affordances are provided for pinned annotations – a
developer can use a keyboard shortcut to cycle through each pinned annotation’s
location to help with navigating through important code patches. Figure 4.2 shows
a pinned annotation one participant in the user study created to help with managing
their working set.

Given the mutable nature of code, keeping annotations attached introduced some
design challenges unique to Catseye in comparison to other annotation systems de-
signed for more static information. Since code is expected to change, retaining the
original anchor point becomes more important as the annotation’s content is more
likely to become out-of-date – we choose to store a copy of the user’s original anchor
point for reference as the code changes. The developer can also explicitly save a ver-
sion of the code by clicking the snapshot button on the code anchor box (see Figure
4.1 at 6). Once the snapshot has been created, the developer can edit the snapshot to
add metadata, such as what output that version of the code produced (Figure 4.1 at
8).

Another design challenge is how to handle the case where the user deletes the
code that an annotation is attached to – should the annotation be removed as well
or should it persist? Different annotation systems do different things – Overleaf
comments will persist when the anchor is deleted, with a line showing where the text
used to be, while Google Doc comments will be removed if their anchor is removed.
We chose to follow Google Doc’s design choice, with the rationale that, if the user
wants the annotation content to persist, they can attach an additional anchor to the
annotation or export the annotation as a code comment.

A related issue is what to do with annotations on code which is copy-and-pasted.
Again, other annotation systems do different things. We decided to not copy the
annotation with the code with the justification that we want to reduce as much po-
tential annotation clutter as possible (thus we choose to never create an annotation
without the user’s explicit request). These design choices also turned out to be the
most useful way for these features to work in the my personal usage of the tool
(see Section 4.6). Notably, handling copy-pasted code is handled more directly with
our later tool, Meta-Manager, where the relationship between the copied code and
pasted code is retained and tracked. In the proposed work, which involves inte-
grating Catseye and Meta-Manager, unifying these two different design goals into a
comprehensible interaction will need to be addressed.

Oftentimes, when a developer wants to keep track of some information, they will
want to resolve or build upon the information they initially felt was worth jotting
down. Catseye follows a similar model to other annotation systems where “follow-
ing up” on the content of a note is kept very general, so the developer can either edit
their original note, or reply to it with their additional thoughts.
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4.2.2 Background and Design Goals

In creating Catseye for Visual Studio Code, we were particularly interested in help-
ing developers capture and keep-track of their ephemeral thoughts, questions, con-
cerns, and open action items related to their code, since this is the least well ad-
dressed aspect of previous tools. We envision that annotating will help with the
following use cases:

• Keeping track of developers’ questions and hypotheses about code. Sillito et
al. [146] found that, during software maintenance tasks, developers reported
over 40 different kinds of questions they had about the code and that there is
little tooling support for finding answers to those questions. They also found
that there is limited tooling support for helping developers keep track of these
questions as they come to an answer. Given that Catseye ’s annotations retain
the original context of the code, and allow for composition of multiple code
snippets through multiple-anchoring, we hypothesize that annotations may
help with keeping track of these complex questions and the eventual answer a
developer finds.

• Keeping track of facts developers learn about code. During any task that re-
quires comprehending code, developers will naturally collect a body of knowl-
edge about the code base [91]. Only some of these facts are appropriate as
documentation, either because the behavior of the code is expected to change
(such as during debugging) or because there is uncertainty about the veracity
of the fact. We hypothesize that Catseye and its annotations will help with
externalizing these thoughts while not requiring laborious clean up, since the
source code is unaffected.

• Keeping track of developers’ open to-do items. In trying to complete a com-
plex programming task, a developer needs to keep track of a multitude of both
high level goals and lower-level implementation steps in order to achieve that
goal which the developer may forget, especially when interrupted [123]. De-
velopers can use annotations to mark the code to change with the details of
their “todo” item, compose snippets that are related to the change using mul-
tiple anchors, and can pin and un-pin the annotation as a way of marking
whether or not the task still needs to be addressed.

• Helping developers navigate their code. An oft reported difficulty in pro-
gramming is navigating the code base, especially when it is large. Developers
typically discover a “working set” of task-relevant code fragments [18, 32, 82],
then spend time navigating among these fragments as they implement their
change. This navigation takes up a large amount of time, especially since these
fragments can be difficult to return to [82]. We expect that clustering anno-
tation anchors using multiple anchors, pinning these annotations for easier
tracking, and using the code anchors as quick links will make this navigation
easier.

• Keeping track of localized changes. When a developer is implementing a
change, they often try multiple versions of the code in order to investigate the
differences in output and ensure that the change works. These changes can be
relatively small (i.e., less than 5 lines of code), may not be tracked in version
control [75], and switching between these versions can be difficult if the prior
versions are not retained, especially since they may be inaccessible through
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undo commands [172]. Catseye allows developers to snapshot their code for
versioning, such that developers can keep track of the different changes they
try and can optionally associate these versions with the output they produced.

• Keeping track of changing system output. While testing changes, developers
have reported a need for keeping track of what version of their code produced
what output [75] and have used strategies such as copy-pasting the output into
text files. We provide annotations as a place to store these outputs – develop-
ers can either reply to their annotation with the output values or edit their
snapshots with the output which comes from that version of the code, thereby
leveraging the context of the code.

Notably, the use cases described above are designed for the benefit of the original
author of the annotation. We chose to focus on supporting the initial annotation author
given the goal of supporting a developer’s tracking of information, which is largely
localized to a single author and their implementation session(s).

4.2.3 Implementation Notes

One particularly important aspect of Catseye is managing the code anchors as the
user actively edits the code. Annotation anchors are kept up-to-date using Visual
Studio Code’s document change event handler. Whenever the user modifies a file
that contains an annotation, the Visual Studio Code API generates a change event
object that we interpret. For simple cases, such as adding a new line at the top of the
file, updating the anchors is trivial, but, in the case of more complex changes, such
as pulling in a new version of code from GitHub (which the Visual Studio Code
API treats as many small edits applied in rapid succession), using the event API can
fail, resulting in an incorrect anchor point. If this occurs, we delete the annotation.
Given that tracking source locations has been a long-standing challenge in software
engineering [134], we leave more robust methods for fixing up broken anchors to
future work, along with investigating the design space of how annotations should
be updated or archived given these large changes. In fact, Sodalite expands upon the
code anchoring functionality thru introducing new types of code anchors that are
designed to be more flexible, such that un-anchoring is less common (see Chapter
5).

4.3 Lab Study

In order to understand how developers keep track of information while making
sense of code when using their own strategies and when using annotations, we ran
a small lab study. Participants in the experimental condition authored annotations
while using Catseye to help them keep track of information, while participants in
the control condition used whatever strategies they normally would employ. The lab
study consisted of a training task, then a debugging task, and ended with a survey
to assess the participants backgrounds, their experience with Catseye if in the ex-
perimental condition, and their experience completing the task. We chose to use a
between-subjects design as opposed to a within-subjects design due to the nature of
the task. The study took around 90 minutes, so adding another training session and
45 minute task would make the study too long. Further, as discussed in [84], since
these are problem-solving tasks that you can only do once, creating 2 tasks which
are independent but of equal difficulty is challenging.
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Game Bug Minimal Solution

Both Unable to Play Games Independently Change one of the event listeners to a different key (1 value change)

Snake Screen Does Not Refresh Adapt Tetris’s screen clearing function to Snake (10 line change)

Snake Snake is Too Fast Adapt Tetris’s timing function to Snake (10 line change)

Snake Snake is Drawn Incorrectly Change the constant value for the snake segment length (1 value change)

Snake Food Collision Check is Incorrect Change the ORs in the boolean to ANDs (2 value change)

Tetris Blocks Falls in Last Key Press Direction Set current direction of block fall to “down” on each game loop (3 value
change)

Tetris Rotating Square Causes Square to Move
Upwards

Add conditional to prevent square from being rotated (3 line change)

Tetris Game Does Not End Change conditional to whether the stack of blocks is at the top of the screen (1
value change)

Tetris Game Calculates Score Incorrectly Increment user’s number of cleared rows instead of setting to last clear row
value (1 value change)

TABLE 4.1: The bugs present in the two games. “Value” refers to a construct in the program, such as
an operator, boolean, or variable.

4.3.1 Method

Training Task

Both conditions included a training task using a repository of website templates1 to
either familiarize the participants with Catseye (experimental condition) or to show-
case how the participants currently keep track of information when programming
(control condition). Participants in the Catseye condition learned how to create and
edit an annotation, pin and reply to an annotation, navigate and version their code
using annotations, and collect system output, with all functionalities contextualized
to how they may be useful for keeping track of different kinds of information. Par-
ticipants in the control condition were asked to describe how they currently keep
track of the different types of information we expect Catseye to support. In this way,
we tried to make sure that both groups were primed about the kinds of activities
that Catseye is designed to support.

Main Task

For the main task, participants were instructed to understand and attempt to debug
a website. Participants were told to imagine that they were a new developer on a
team and that they were tasked with understanding and debugging some code. For
the first 15 minutes, the participants were not allowed to edit the pre-existing code
(but they could add comments and print statements) as part of the scenario in which
they are new to a team and should spend time familiarizing themselves with the
code prior to contributing changes. This also allowed us to investigate differences in
the kinds of annotations made while understanding versus debugging and editing.
After the 15 minutes of understanding and testing the code, participants had 30
minutes to attempt to use what they learned to resolve issues they had discovered.

The website included buggy implementations of Snake and Tetris. Each game
had 4 bugs, with an additional bug that affected both games, totalling 9 bugs (see
Table 4.1). We chose these two games since they are both relatively well-known, are
event-based which makes understanding their structure less straightforward, and
have clear requirements such that testing the games takes less time in comparison to
actually debugging their logic. Similar tasks have been used in related studies [123,
124].

1https://github.com/ShauryaBhandari/Website-Templates

https://github.com/ShauryaBhandari/Website-Templates
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What Information to Track What Aspect of the Task Explanation

Questions, Hypotheses, and
Answers

Debugging task Debugging naturally leads to many questions and hypotheses about
the program behavior but subsequent answers may be lost or forgotten
[146]

Facts Poorly-written and documented
code

Developers are tasked with learning what the code constructs are and
how they are used

Open Tasks 15-30 time split Allow developers to discover many bugs, then have them decide which
ones to focus on and how to fix them

Navigation Poorly-organized code Constructs, including methods and classes, are spread across multiple
files including some files the participant cannot edit

Localized Changes and Output Arcade Games By having two arcade games, participants are tasked with making
changes and seeing how that affects each game and how that affects
each game’s output

TABLE 4.2: How the study task encapsulates the types of information Catseye supports.

The code was specifically designed to be confusing in order to make keeping
track of information particularly important (see Table 4.2). Given prior literature
around what makes code confusing [146], we purposefully included bad code smells
such as poorly-named variables, global variables, lack of organization amongst meth-
ods, and no documentation. Since participants only had 45 minutes for the task,
we wanted to necessitate keeping track of information while also keeping the task
semi-realistic through using known issues when comprehending unfamiliar code.
To further validate the realism of the code, we included two questions in our post-
task survey that asked participants how similar the code they saw in the study is
to code they have encountered during their time as developers and how frequently
they have encountered such code. Participants reported the code is similar to code
they have encountered before2 but that they do not encounter code like this very
frequently3.

4.3.2 Participants

We recruited 13 participants (5 women and 8 men) using study recruitment channels
at our institution, and advertisements on social media. Participants were randomly
assigned between the control and experimental conditions, with 7 participants in
the experimental condition and 6 in the control condition – participants in the ex-
perimental condition are referred to as “P1” through ”P7” and control participants
“C1” through “C6”.

All of the participants were required to have some amount of experience using
JavaScript, to have a GitHub account, and to regularly use Visual Studio Code. The
participants’ professions included graduate students in computer science-related
fields, undergraduate students in computer science, and professional programmers.
On average, participants had 10.2 years of programming experience, 5.2 years of pro-
fessional programming experience, and rated their familiarity with JavaScript at 4.5
out of 7. Participants in the control condition had more experience and more profes-
sional experience, on average, than experimental participants, but not significantly
more.

4.3.3 Analysis

Across both conditions, we objectively coded what bugs the participant succeeded in
fixing (see Table 4.1). In the experimental condition, we analyzed the video record-
ings and log data to count how many annotations each participant authored and

2average = 3.4 out of 5, using a 1-to-5-point Likert scale from very dissimilar to very similar
3average = 2.6 out of 5, using a 1-to-5-point Likert scale from never to very frequently
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how often they interacted with their annotations to assess the utility of the annota-
tions for keeping track of information. We additionally logged whether or not any
annotations were made in the first 15 minutes and, for annotations created during
the debugging part of the task, what bug the participant was attempting to solve at
the time of creation. We analyzed the videos in the control condition to log the same
types of interactions including the artifacts developers made in that condition, such
as code comments and external notes.

We additionally labeled the annotations and control condition notes with the
type of information it was being used to help keep track of. We objectively coded
this conservatively based off the content. If an annotation’s or artifact’s content was
phrased as a question or had a question mark, it was coded as a question; if the
content had words such as “might” or “seems like”, it was coded as a hypothesis;
if the content was phrased as an objective such as “change this”, it was coded as a
task; and if the content was stated as a fact (e.g., ”game-1.js is snake”) it was coded
as a fact (even if the fact was incorrect). The same process was used for annotation
replies.

We counted items as used for "versioning" when they either contained a snapshot
(annotation) or were used to mark a change they made to the code base (annotation
or control artifact). For navigation, we counted an annotation that is pinned and/or
had multiple anchors as used for navigation.4 We counted an annotation or control
artifact as being used for output if the participant used it to store or comment upon
the game output. If the content of an annotation or artifact did not fit into any of
these categories, it was marked as “Other”. For replies, we also labeled whether or
not a reply served as an answer to their question annotation – a reply was consid-
ered an “answer” if its content was a direct response to the question’s content that
supported or refuted it.

4.4 Results

Participants in the experimental condition fixed, on average, 1.85 bugs (min = 0,
max = 4), while participants in the control condition fixed 0.67 bugs (min = 0, max =
1), a significant difference (two-tailed T-test, p = .04). To further explore these results,
we investigate what types of information participants chose to keep track of through
annotations versus what information control participants used their artifacts to keep
track of, how participants used their information when completing the debugging
tasks, and how participants performed on the debugging task.

4.4.1 What Information Do Developers Keep Track of with Annotations
and Artifacts?

Experimental condition participants created 84 annotations, with each of these par-
ticipants creating, on average, 12 annotations (min = 6, max = 21, median = 10, std.
dev. = 5.446). 44 of the annotations were made in the first 15 minutes and 40 were
made in the last 30 minutes. The size of the annotations averaged 12.2 words (min
= 1, max = 45, median = 12.5) and they were attached to code averaging 29.3 charac-
ters. Each anchor was, on average, 1.59 lines long, with the majority of annotations
attached to one line or less of code (71/84).

4Since multiple anchors and pinning are unrelated to the text content of an annotation, this means
an annotation could be marked as both “navigation” and, for example, “fact”.
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FIGURE 4.3: The average number of annotations and artifacts participants created during the study.

Across those 84 annotations, developers had a variety of types of information
they chose to keep track of through annotations (see Figure 4.3). The most com-
mon usage for an annotation was to keep track of open questions developers had
with 28 out of the 84 annotations being questions (33.3%). 16 of these questions
were made during the first 15 minutes, while the remaining 12 were created in the
last 30 minutes. 6 out of those 28 questions were definitively answered, while 2
had follow-up hypotheses given program output behavior, and 1 had a follow-up
question associated with the original question, resulting in 9 out of the 28 questions
being followed-up on in some way. Given the complexity of the task, the amount
of answered questions is not particularly surprising, but the fact that participants
followed-up on their questions at all provides support for the argument that anno-
tations can serve as dedicated spaces for these questions. In contrast, as discussed
below, only 1 of the control condition’s 17 questions were followed-up on or an-
swered.

The second most common type of information experimental condition partici-
pants kept track of in their annotations were facts they discovered about the code,
with facts comprising 27 out of the 84 annotations (32.3%). 23 of these 27 facts clar-
ified information that was explicitly designed to be confusing. For example, P1 an-
notated const c = document.getElementById(’t’) with “this is the canvas of the
tetris game”. 18 of these 27 annotations were made in the first 15 minutes, when
participants were reading through and understanding the code.

Experimental condition participants also utilized annotations to keep track of
their open tasks (21.4% of their annotations) and to navigate the code (17.9% of their
annotations). These annotations typically served as reminders to the participant
about places in the code base they suspected were related to the bugs they identified
in the code. The majority of task annotations were made during the 30 minute de-
bugging phase (12/18) suggesting that there was more of a need for keeping track
of their areas of interest in the code once they were developing, as opposed to when
they were trying to understand the logic.

Experimental condition participants did not use their annotations for keeping
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track of their code versions, with no participants using the snapshot feature. Par-
ticipants did create annotations to comment on parts of the code they added or
modified, with 6 annotations made on the participant’s own code that they added.
Considering that participants, in general, did not edit the code very much, since the
bugs did not require large modifications to fix, there may have been less of a need
to keep track of small localized changes. Further, the code that participants chose to
annotate was usually code that the participants did not edit, with only 12 of the an-
notations’ corresponding code being edited. 3 annotations were used to keep track
of output – the small number of output annotations may also be due to the minimal
amounts of changes participants made to the code. Further, since the program was
a computer game, much of the output changes were graphical which is not output
that Catseye can capture currently.

In the control condition, the participants created a total of 100 different artifacts,
averaging 16.67 artifacts per participant (min = 2, max = 27, median = 15, std. dev.
= 9.771) – which is slightly more artifacts per participant than in the experimental
condition, but the difference is not statistically significant (p = .76, T-test). This may
partially be due to the fact that control participants were primed to think about and
show how they keep track of information. Further, all of the control participants had
some note taking strategy that they described using in their daily work.

Their artifacts included 78 code comments, 14 external notes (with 5 of the notes
being created on a tablet computer, 1 being created in a Notepad document, and the
remaining 8 created using pen and paper), and 8 Git commit message5. The artifacts
averaged 5.95 words (min = 1, max = 22) – notably shorter than the annotations,
which averaged 12.2 words per annotation.

The information that control participants chose to keep track of through artifacts
differs from the information that was annotated (see Figure 4.3). While, in both con-
ditions, facts, questions, and open tasks were the three most commonly kept track of
information types, participants in the control condition kept track of facts the most,
while participants in the experimental condition kept track of questions most of-
ten. Participants in the control condition also favored “task” artifacts more so than
experimental condition participants, with most in the form of “TODO” code com-
ments (66.6%) consistent with prior work [153]. Only one control participant actively
attempted to keep track of different versions of their code, and none of the control
participants kept track of the output of their code or used any specific mechanisms
to help navigate their code, aside from traditional code search (which participants
in the experimental condition also used). These results suggest that annotations can
promote more entering of questions and answers in comparison to traditional notes
and annotations can keep track of other types of information that may otherwise not
be captured.

4.4.2 How Do Developers Use Their Annotations and Artifacts?

We quantify usage of annotations or artifacts by counting whenever a user interacted
with their annotation or artifact in some way. On average, experimental participants
revisited 5.71 unique annotations, and revisited their annotations 11.14 times over
the course of the study. In contrast, the control condition, on average, revisited 3.5
artifacts a total of 4.67 times suggesting that the annotations were more successful
in encouraging participants to follow-up on their information. One of the two most
successful participants, both of whom fixed 4 bugs, also created the most annotations

5All of the Git commit messages were created by one participant.
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Bug # of Experimental
Participants Who
Fixed This Bug

# of Control
Participants Who
Fixed This Bug

% of Debugging
Annotations Made
About Bug

% of Debugging
Control Artifacts
Made About Bug

Unable to Play Games Independently 2 2 12.5% 0%

Snake Screen Does Not Refresh 3 0 12.5% 0%

Snake is Too Fast 2 2 15% 88.6%

Snake is Drawn Incorrectly 1 0 2.5% 0%

Snake Food Collision Check is Incorrect 1 0 7.5% 5.7%

Tetris Blocks Falls in Last Key Press Direction 1 1 35% 5.7%

Tetris Rotating Square Causes Square to Move
Upwards

0 0 0% 0%

Tetris Game Does Not End 1 0 12.5% 0%

Tetris Game Calculates Score Incorrectly 0 0 2.5% 0 %

TABLE 4.3: The annotations and artifacts participants created during the study while working on
each bug. The experimental condition made 40 annotations while working on bugs, while the control
condition created 35 artifacts. The last 2 columns refer to the proportion of annotations made about
that bug out of the 40 annotations made while debugging, and the proportion of control condition
artifacts made about that bug out of the 35 artifacts made while debugging, respectively.

(21) and revisited his annotations the most, revisiting 14 of them 32 times, suggesting
annotation usage may have contributed to his success.

Experimental participants often revisited their annotations to add replies to their
annotations, with participants creating 16 replies and 5 out of 7 participants creating
at least 1 reply. Replies typically served as an extension of the annotation’s original
content, with some annotations serving as answers to the original question (6), hy-
potheses about the behavior of the code (3), and follow-up tasks that they wanted to
complete related to the original annotation (3). For example, P5 made an annotation
about Snake where the initial annotation just said “Game 1: Snake” and created two
replies, with the first reply explaining what the two Snake-related files did, and the
second reply listing all of the bugs she had encountered with Snake – she then revis-
ited this annotation 3 times over the course of the study to keep track of her bugs.
Replies also sometimes functioned as places to discuss the behavior of the code after
the participant attempted to fix a bug associated with the annotated code, with 2
replies commenting on whether their implementation worked or not.

Participants also used pinning, multiple anchors, and anchor clicking as a way
of supporting their navigation while working on the task. 5 annotations had mul-
tiple anchors, 3 annotations were pinned, and the participants used the anchors to
navigate the code base 19 times. In contrast, the control condition did not use any of
their artifacts to help them navigate the code base.

Three experimental participants also chose to delete their annotations once they
were “done” with them, with these participants deleting a total of 14 annotations.
The most successful participant deleted 12 of his 21 annotations over the course of
the study – whenever he fixed a bug he would find each annotation that related
to that bug and delete it, while keeping open the annotations that were still unre-
solved. His usage of Catseye suggests that annotations can function similarly to
comments in systems like Google Docs where, even if the content of the comment
is not necessarily a “to-do item”, the comments can still be resolved in a similar
manner. Control participants only deleted their artifacts, on average, 0.8 times while
experimental participants averaged 2.16 deletions, further suggesting that a Google
Docs-style design encourages more clean-up than regular code comments or exter-
nal notes.
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4.4.3 How Did Participants Identify and Fix Their Bugs?

All bugs were identified by at least 1 experimental participant and had at least 1
annotation created about it, save for the Tetris square rotation bug. No participants
in the control condition identified the Tetris rotating square bug or the Tetris score
calculation bug, so no control participants made artifacts about those bugs.

When struggling with difficult bugs, participants seemed to create more anno-
tations and artifacts. For example, the “Snake is Too Fast” bug, which required 10
lines of code to change, was only successfully completed by 3 out of the 7 partici-
pants who attempted it, and resulted in the majority of control condition artifacts to
be about this bug, along with some annotations (see Table 4.3). Conversely, some of
the simpler bugs to fix, such as “Snake is Drawn Incorrectly” had fewer annotations
made about them as there was less need for participants to externalize their thought
processes.

Some particularly complex bugs led participants in the control condition to uti-
lize their notes in different ways than their experimental counterparts did. 3 control
participants made a total of 3 external notes that were either visual diagrams of how
they thought the games should function or were algorithmic step-by-step instruc-
tions for how to design their bug fix. Since the experimental condition created no
similar notes, this suggests that future versions of Catseye may better support users
by including a way to attach and create visual diagrams, screenshots, or drawings to
annotations and support richer interactions for checking off completed steps in an
algorithm.

Participants in the experimental condition occasionally made annotations that
documented how they fixed a bug, with 4 annotations created for this purpose. For
example, P6 wrote some code to try and fix the Snake Screen Does Not Refresh bug
and annotated their code with the text “Attempt at clearing the score” and edited
their implementation 3 times to try and achieve the correct behavior. P6 then made
2 more annotations on other code snippets that they were referencing when trying
to fix their implementation, hypothesizing about how they could adapt the func-
tionality of that code to solve their bug. Their usage suggests annotations can help
with marking and documenting code while debugging, including code the user has
added that attempts to fix the bug.

4.5 Discussion

Our experiments lend support to the concept that annotations may be used as a
lightweight way of capturing and following-up on information that may not other-
wise be kept track of when programming. Participants succeeded in creating ques-
tions, following up on those insights, and revisiting these notes in order to fix their
bugs and had more success, on average, than the control condition.

Four participants asked to continue using Catseye after the study, with 2 partic-
ipants creating more annotations in their own code after their session. One of these
2 participants reported back on her usage of the tool in her daily work. She found
the tool useful for externalizing her “design-oriented notes-to-self” such as “maybe
I should do X instead, if I do decide to do that, this is the code that needs to be edited
to make it happen”. Notably, this is the type of information she says she would nor-
mally write down on a piece of paper and not use code comments for since she does
not want to create clutter that will only confuse her or her collaborators later. She
found Catseye valuable for acting as a space for capturing this “thought history”
that leverages the context of the code. Her experience lends further support to our
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claim that supporting thinking through and keeping track of developers’ thoughts
in a dedicated space when programming is useful.

Participants found the annotating metaphor familiar and understandable, de-
spite the amount of complex activities participants could use the annotations to sup-
port, with participants in the post-task survey saying the system was very easy to
learn how to use.6 Prior work has noted that annotations’ flexible nature and struc-
ture allows them to be used in a variety of ways [5, 15] – we build upon this by
showing that annotations can be used in new ways, including to store output, to
store and capture versions of code, and as navigational aids. Typically, attempts
to support these different activities are siloed into different research tools; annota-
tion systems show a promising alternative where, by utilizing annotations’ flexible
nature, they can act as a more general “workspace” for storing and thinking about
contextualized information a developer cares about.

Another way that participants used annotations as a general “workspace” for
thinking was through using their annotation as a “placeholder” when navigating
their code. For example, P3 created a question annotation asking why a certain
method gets called twice. They followed-up with a hypothesis stating “seems like
it’s because it calls the draw function, which has some special logic that only oc-
curs if play is true”, but, while writing this reply, they paused to continue explor-
ing the file while reflecting on their hypothesis, before returning to the annotation
and finishing their initial thought with a guess, “but you still want to call win-
dow.requestAnimationFrame i guess?”, given what they had learned while explor-
ing. Three other participants paused while creating their annotations to explore the
files and think critically about what they were choosing to annotate, which suggests
that the choice to have the annotations in their own dedicated pane separate from
the context of the code may better support this kind of self-reflection. Notably, these
self-reflections have been shown to improve learning outcomes [31].

Some participants in the Catseye condition thought that the output and version
capturing features would be particularly useful, despite not using them in the study.
Two experimental condition participants reported in the post-task survey that they
would use the snapshot feature in their own programming, since they found it dif-
ficult to go back to GitHub to see other versions of their code and they sometimes
created many small changes that were not tracked in version control. A third ex-
perimental participant noted that they wanted to use this feature to capture output
when they are performing maintenance tasks like refactoring and need to keep track
of many “moving parts” and how their changes affect the behavior of their code.
Since running the study, we enhanced Catseye to automatically capture intermittent
output through connecting into the Visual Studio Code debugging API to capture
and store run time data as replies when an annotated line of code is run.

Two participants in the control condition and 2 participants in the experimental
condition created artifacts that, while phrased as a fact, were incorrect. The con-
trol participants added comments above functions incorrectly stating what the func-
tions’ purposes were. The 2 experimental participants incorrectly assumed what a
function and variable were used for, respectively. These annotations, while incorrect,
are only visible to the original annotator, while the code comments could, in theory,
be viewed by any collaborator, which could potentially misinform them. Even if the
annotations were viewable to collaborators, they would not be in the code acting
as documentation, lessening their potential to be harmful. An incorrect annotation

6“I consider it easy for me to learn how to use Catseye”, average score 6.83 out of 7, with 7 being
“Strongly Agree”
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could be a learning opportunity with the reply feature, where a collaborator could
clarify or correct a misinterpretation of the code.

Two control participants had problems managing their code comments. C1 cre-
ated a comment noting that a particular part of the Snake code looked like it was
used for initialization, then discarded the commit that contained that comment. 10
minutes later, they searched for that comment, forgetting that they had discarded
the comment. C2 marked a part of the code with the comment “REVISIT” but then
undid a series of changes in order to revert to an older version of the code, removing
that comment in the process, and then never revisited that part of the code. Par-
ticipants in the Catseye condition did not create any code comments (2 participants
started to make code comments before removing them and manually converting
them into annotations) and did not lose any of their annotations during the study
– annotations’ meta-nature may serve as a safeguard from erroneously removing
them. However, Catseye users could, in theory, lose their annotations by erroneously
deleting the code with which the annotation is associated. Currently, Catseye does
not put annotation creation, editing, or deletion into the Visual Studio Code undo
stack, another area where other annotation systems differ – Overleaf similarly does
not, whereas Google Doc puts comment creation in the undo stack (but not comment
editing or resolving!). In my own usage of Catseye, putting annotation creation on
the stack would be beneficial, given that I normally annotated code I had just worked
on – this means that performing an undo operation is likely to modify the code an-
chor the annotation corresponds to, which may change the annotation’s meaning or
cause it to become detached if the code did not exist in the prior edit. Annotation
deletion would also make sense to go on the undo stack, especially in the case that
the annotation is deleted because its code anchor was deleted, given that an undo
operation would bring back that code anchor, thus should bring back the annotation.
This is how similar systems, such as Google Docs, works.

4.6 First Author Usage of Catseye

I used Catseye while developing Catseye as a form of “dogfooding.” Anecdotally,
we report on the annotations created by myself using the same methodology of la-
belling each annotation by the primary type of information it was meant to keep
track of. We omit annotations made without any text content, as they do not have
enough context for labeling, and annotations made purely for testing the applica-
tion, considering they do not represent “real” usage of the tool. All of these annota-
tions were created by myself to help myself, either in the short term (so they were
ephemeral) or for when I returned to the code later.

Over 12 months, I created 182 “real” annotations in the Catseye repository across
25 source files, with each annotation averaging 28.95 words (min. = 2, max. = 143,
std. dev. = 27.99). 42 annotations had a total of 58 replies, 8 annotations had 18
snapshots, 3 annotations had multiple anchors,7 and 9 annotations were pinned.8

110 of these 182 annotations were deleted as I finished open tasks and iterated over
the code, including removing the code the annotation is anchored to which deletes
the annotation.

7Multiple anchors were added late in development, so the lack of multiple anchor usage is primarily
due to the short amount of time to use the feature.

8This is a conservative count, considering we used our log data and the log does not count when-
ever an annotation is pinned or un-pinned, just whether the annotation was pinned the last time it was
updated in the database.
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The content in each annotation differs slightly from the annotations created in
the lab study, perhaps due to the different nature of development. The most com-
mon annotation type was “task” type annotations, with 48 of the 182 annotations
reporting some open action item I needed to act on – in contrast to the task anno-
tations made in the study, these task annotations served as reminders for places to
change when performing maintenance tasks like refactoring, as opposed to parts of
the code that may have a bug. I also created many question annotations (47 out of
182) – 12 were replied to, with 4 of these replies answering the original question,
and 17 questions were deleted. These questions typically pondered the system be-
havior, previous design choices, or details of the Visual Studio Code API. The third
most common code was “Other”, with 16 annotations. All of these “other” anno-
tations served as a reaction to the code, with these reactions sometimes pondering
the former design rationale and sometimes expressing frustration with implementa-
tion challenges. For example, one annotation, anchored to a particularly confusing
function said “This is a pain”. No annotations were made like this in the lab study,
suggesting that actively implementing and writing code may elicit different types of
information than code understanding and debugging tasks.

Actively using Catseye also led to changes in the tool’s design. Initially, an anno-
tation would be copied if the developer copied the annotation’s code anchor point.
However, given that code was often copied to be used as a template, in active de-
velopment, copy-pasting the annotations resulted in duplicated annotations with
irrelevant content as the code changed, which I found to be more distracting than
helpful. This experience informed our design decision to not copy the annotation
content when the user copy-pastes the anchor code. However, there may be situ-
ations in which it would be better to copy the annotation with the code, such as
when the annotation serves to document behavior about the code. Future versions
of Catseye might benefit from allowing the user to choose whether or not to have the
annotation copied with the code, or alternatively, to add a new anchor to the original
annotation.

I found the tool useful for externalizing and thinking through problems and
stopped using code comments in favor of annotations. The ephemeral nature of the
annotations was particularly useful in the development of Catseye since the code
was nearly constantly changing which lead to a lot of uncertainty about the design
and implementation details – information that I did not want to commit to the code
base as comments in case the information ended up becoming obsolete (a common
problem with code comments [49, 131, 155, 156]).

4.7 Conclusion and Future Work

In our development of Catseye, we found evidence that note taking and collecting
of code-related meta-information was helpful for developers when tracking infor-
mation. Further, we found evidence that these activities could be supported using a
singular, lightweight interaction design – annotation. These findings extended our
previous findings from Adamite by generalizing our approach to a different devel-
oper sensemaking domain while tracking other types of information. Much of the
success of the annotation approach can be attributed to the localized nature of the
annotations and their connection to the source material through their anchor point.
This connection allows for the note to serve as a navigational way point, allows
for commenting on different types of code with the same interaction method (e.g.,
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commenting on a variable within a line of code versus commenting on a whole con-
ditional that spans multiple lines), and supports code-specific activities including
versioning and output capture. With that in mind, we sought to extend our code
anchoring support and the types of information that may be attached to the code
anchor points through extending Catseye into a long-form documentation tool, So-
dalite.
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Chapter 5

Sodalite: Meta-Information to
Support Documentation
Management

This chapter is adapted from my paper:

[67] Amber Horvath, Andrew Macvean, and Brad A. Myers. 2023. “Sup-
port for Long-Form Documentation Authoring and Maintenance”. In 2023
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
Washington, D.C., October 2-6, 2023. IEEE.

5.1 Overview

The connection between code and text written about code has long been studied and
explored. From literate programming [35, 81, 145], which has had a recent resur-
gence with the rise of Jupyter notebooks [77], to various forms of documentation [1,
32], there exists a tension between making code comprehensible through expressing
the design intent in a more naturalistic and human-readable form, while allowing for
the control that traditional programming languages provide. Our approach with So-
dalite1, sits at the intersection between these two approaches by allowing the source
code to be anchored to the corresponding written text that seeks to e.g., describe how
it functions, or how it came to be.

Once the text is anchored, this relationship can be utilized in new ways. While
Catseye and Adamite automatically attempted to update and repair any links be-
tween annotation and source text or code that appeared broken, this process some-
times failed and the annotation would be thrown away. This often occurred when
the original source document changed in such a way that there was no longer an
appropriate anchor location for the annotation, such as during a Git pull or if the
API documentation changed between releases. While the fact that the annotation is
no longer anchored, thus, may no longer be appropriate for the author or a reader to
reference, the fact that it became un-anchored itself may be useful. For example, if I
have annotated an API method’s parameters with the specifics of my particular im-
plementation, it would be useful to know that, in the new release of the API, these
parameters no longer exist and my implementation will need to be changed. The

1Sodalite is a royal blue mineral and stands for Stories for On-boarding as Documentation
Authoring, Leveraging IDEs for Text Enahancements.
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challenge of keeping code and documentation in sync with one another has been a
long-standing research problem [4, 137, 163].

This chapter explores utilizing the connection between code and text to overcome
longstanding barriers in documentation authoring and maintenance. By leverag-
ing code meta-information including the structure, existence, and location of code,
Sodalite is able to automatically determine the likelihood of the documentation be-
ing out-of-date given how well the system performs at re-attaching each code-text
pair to the code in the IDE. Sodalite also uses this meta-information to help the ini-
tial documentation author in writing their “code story” through suggesting code
patches to document, given the author’s already-documented code, and providing
templates for bootstrapping the authoring process. We expect this documentation
authoring and maintaining process to be particularly useful for developer teams or
open source projects, where the documentation and corresponding source code can
“live together”, with team-oriented documentation suffering from many of the same
barriers that end-user facing documentation does [74, 135], including out-of-date in-
formation [135], while typically lacking a dedicated team or process for updating the
documentation [3, 38].

5.2 Background and Related Work

Prior work about writing software documentation have ranged from understanding
what information is in documentation [61, 103], what the problems are with that
information [3, 4, 26, 45, 93, 108, 118, 137, 139, 163], how software documentation is
authored [38, 143, 152], and automating documentation processes to offset authoring
costs and standardize the information present in documentation [2, 55]. Notably, the
majority of this documentation work is in the context of software documentation
for end users of a software library, e.g. API documentation [115]. Most relevant to
our work are studies about documentation created for other developers working on
the same code base, such as internal documentation about the code base [135, 143] or
a code tour for an open source repository [158], where the primary goal is to help
other developers understand and contribute to the code base. Our work expands
upon this work by contributing a system designed specifically to help create this
type of documentation, with a focus on combating some of the known issues in
authoring and maintaining this documentation including out-of-date information.

Once some software documentation is made, researchers have studied how de-
velopers maintain those documents and use that information. In studies of usage,
researchers have identified many problems of documentation that lead to the doc-
umentation being less trustworthy [100], including questions about how up-to-date
the information is [4, 93, 163] and completeness [137, 139]. A survey of develop-
ers at one company reported that they rarely updated documentation and that they
correctly assumed that documentation content is out-of-date [93]. One reason for
this lack of maintenance is that finding the appropriate places to update given a
change can be challenging, with developers reporting that they would value a tool
that helps identify those locations [50]. Our system attempts to reduce some of these
costs by having maintenance be a core design consideration by automatically locat-
ing and highlighting the out-of-date portions of the document given which code was
changed.
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FIGURE 5.1: The editor for authoring a story using Sodalite – this is a simplified and anonymous recre-
ation of P2’s story for demonstrative purposes. (1a) and (1b) show the relationship between the code
editor and the story editor – in this case, the user has clicked the code Link, prompting the suggestions
pane to show identifiers related to Link. (2) is the template list with the selected “Overview” template
highlighted. The “Code References” at (3) are represented in a list (4a, 5a, and 6a) and their locations
are shown in the story text at (4b), (5b), and (6b), respectively. The title of the story is (7).

5.3 Sodalite

In order to use Sodalite, a user begins by opening the Sodalite webview [111] which
appears and functions like any other file in the editor (i.e., it can be dragged, resized,
closed, etc.). The user can then view the stories that have been associated with the
user’s currently-open GitHub repository or choose to author a new story (see Figure
5.1). When authoring a new story, the user will be presented with a rich text editor,
hereafter referred to as the “story editor” (in contrast to the “code editor”, which
refers to the Visual Studio Code IDE), and users can utilize code story templates and
code links. For already-authored code stories, the system performs its maintenance
algorithm to determine what code links are potentially invalid.

5.3.1 Templates

We included templates for stories to help guide authors about what should be doc-
umented (a common problem with documentation authoring is not knowing what
is important to document [38]) and to provide built-in mechanisms for allowing de-
velopers to find the right code and code-related information to include in the docu-
mentation.

We began by identifying various types of developer long-form writings that are
not adequately supported by current tooling and would benefit from leveraging the
context of the source code. We compiled this list through a combination of review-
ing literature and informally consulting with software engineers. For each of these
types, we developed a “template” which contains a list of headings, subheadings,
and guided instructions with prioritized code links (see Section 5.3.2), that would
most likely be included. This list includes:
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• Overview documents, which serve to introduce a newcomer to a code base
[135, 158]. This template prioritizes higher-level information, including refer-
ences to functions and classes, with the assumption that developers most likely
do not want to cover lower-level specifics in an overview. “Overview” also
prioritizes identifiers with certain keywords in their names that are commonly
associated with control flow in a web development project, such as “listen” or
“handle”, with the rationale that the logical flow of a project may be discussed
in an overview.

• Journal entries, which serve as logs about what a software engineer completed
in a workday and are sometimes required by management [102].

• Feature descriptions, in which a developer discusses what a particular part of
a code base does and is has been claimed to be one of the most important types
of documentation for developers [93].

• API descriptions, where a developer catalogs what they have learned about
an API to benefit later developers [65].

• Change logs, in which a developer enumerates parts of the code base that have
changed between releases of a software project [102], but, due to authoring
costs, can be incomplete [28].

Note that we are not claiming that this is an exhaustive list and our system allows
developers to define their own template if the built-in ones are not adequate by using
a predefined JavaScript object notation (JSON) structure that Sodalite reads. The
system also defaults to a “Blank” template, such that the user can define their own
structure without extending Sodalite.

5.3.2 Code Links and Suggestions

A key feature of Sodalite are code links, where the story references back to code. Links
can be made manually or using the “Suggestions” pane (see Figure 5.1-1b), which
lists code links that the author may include in their code story. Code links come in
three varieties:

• Identifier definitions, which link to where a specific code entity like a method
or variable is first defined. A user can create an identifier definition link by
selecting the “plus” button in the suggestions pane at the top right corner of
the code link box. Identifier definitions also include additional information
about the identifier, including places in which it is referenced, and other classes
or functions it references (see Figure 5.1-4a).

• Identifier references, which link to a specific instance in which a particular
identifier is referenced or used. An author can make an identifier reference by
selecting a reference that is listed in an identifier definition’s list of referenced
locations. Figure 5.1-5a shows a reference.

• Code ranges (see Figure 5.1-6a), which can be any arbitrary range of code that
the user has selected in the Visual Studio Code editor. Selected code in the code
editor will always appear at the top of the user’s “Suggestions” list, given that
selecting code is a strong signal that the user wants to include that code in
their story. Code ranges are fundamentally the same as the “code anchors”
that Catseye supports.
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Code links can be added to a code story in two different ways. If the user has
no text selected in the story editor, the code link will either insert the name of the
identifier (identifier definitions and references) or the selected code (code range) at
the location of the user’s cursor. If the user has selected some text in their code
story, that text will be linked to their code (see Figure 5.1-4b, 5b and 6b). Either
way, clicking on a code link within the story editor will navigate to wherever that
particular code link is located in the code editor. Once a code link has been added
to a story, it will appear in a “Code References” list (Figure 5.1-3), such that the link
may be used elsewhere in the story.

Code links can also contain additional meta-data Sodalite was able to determine
about that part of the code. This includes, for the identifiers, where they are defined,
and referenced in different parts of the code. Once a code link has been included
in the code story the “Suggestions” pane will include other identifiers that were
commonly edited at the same time as that particular identifier. We identify these
“co-edits” by parsing the Git commit history for that particular identifier and count
when other identifiers appear in the same commit. In this way, we attempt to iden-
tify parts of code that are related but not in a way AST parsing would find.

Given these different types of code links, the “Suggestions” pane uses different
sources of information to populate its list. Sodalite examines both what the user
is doing in the story editor and what they are doing in the code editor. The infor-
mation the algorithm leverages from the story includes what references are already
included in the story and what the user has most recently typed. Identifiers related
to references already within the code story will be prioritized, as will identifiers that
match some part of the most recently-typed text. The system then complements that
information with what it knows about the user’s current location within the code,
including if the user is currently selecting an identifier, and, if so, what identifiers
are related to the selected identifier, along with other identifiers referenced in the
file and, if applicable, in the user’s currently selected scope. Some templates like the
“Change Log” prioritize certain types of code links (e.g., code links that have been
heavily edited), in which case the system favors those identifiers in the Suggestions
list. Identifiers that appear in multiple information sources are pushed to the top of
the list. To prevent the user from being overwhelmed with suggestions, we limit the
amount of suggestions to the top 10.

When a story is saved, Sodalite generates a JSON file in a system-generated
folder, which can be committed to the user’s Git repository and used by other pro-
grammers when they read or edit the source code. This JSON file is also used by the
system when determining what code links are out-of-date.

5.3.3 Support for Reading

Sodalite has some features designed specifically to help readers of code stories bet-
ter understand and utilize the documentation. A core feature of Sodalite for readers
of code stories is the fact that it is situated within the context of the code. Devel-
opers have previously stated they value source code and code comments more than
other types of documentation [148] – we hypothesize that bringing the type of infor-
mation typically in external documentation into the source code will allow for “the
best of both worlds” by staying within the developer’s working context while also
supporting longer-form text.

Another feature of Sodalite that we expect to help users of code stories are the
bi-directional nature of the code links. When some code has been linked in a story,
the code will be highlighted within the IDE, such that users of the code can discover
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FIGURE 5.2: How Sodalite appears after a story has been authored. (1) shows the hover text when a
code link is interacted with in the code editor. (2) is a code link that has been marked as “needs review”
given that the original code (shown in (3)) and the code in the editor (at (1)) are different. (4) are two
other collapsed code stories.

pertinent documentation that is relevant to that code (see Figure 5.2-1). The high-
lighted code brings up a hover text that shows a preview of the code story, including
the surrounding text from the story, the part of the story that is linked to the code
in bold, and the name and author of the story. If the surrounding story text con-
tains code links to other parts of the code, those links will navigate the user to the
code link’s location. If the user clicks on the link in the hover text, the Sodalite pane
will open and scroll to the correct part of the story. This does not interfere with the
regular links in Visual Studio Code’s hover text, which still work like normal.

Users of code stories are also presented with additional context about the origi-
nally authored story, to further help them validate what information is still relevant.
The story shows who authored the story, the date and what Git version the project
was on when the story was last authored or modified, and each code link in the
story displays additional metadata about what version of the code it was on when
authored, along with its original code content and context. This metadata comple-
ments the information the out-of-date system provides when the story is validated.

5.3.4 Support for Maintenance

Sodalite leverages being in the code editor and having access to Git versioning in-
formation to be able to mark parts of stories as “valid” (in which all code links are
valid), potentially in“need of review” (in which the system found a potential match
for the code link, but it is not positive – see Figure 5.2) or definitely “invalid” based
on how well the system is able to match the code references in the story to the code
currently in the user’s project in Visual Studio Code. There are situations in which
the documentation may go out-of-date that our system would not capture, but, in a
study of documentation problems, [4] found that most cases in which the documen-
tation went out-of-date was due to the code changing, so we focus on that case with
Sodalite.

On launch, Sodalite parses every code story file in the user’s current project and
builds an internal AST representation of the code in the project to compare the code
links against. We use the different types of code links to inform how to re-attach a
particular link and whether that attachment is valid or not.
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For code anchors, given their flexible code structures (e.g., anything from a string
to a full multi-line expression), we begin by evaluating the most optimistic condi-
tion, in which nothing has changed, through checking whether the position we have
saved contains the same code as the code link. If not, we then look for whether
the code from the code link exists anywhere within the document. If that does not
work, we use purely text-based matching mechanisms to discern candidate match-
ing points, since that was the most successful method used in [134]. We use AST in-
formation to restrict our search spaces, using a recursive function from most within
the last-known scope location.

In the case of multiple matches or no matches, we run our re-anchoring algo-
rithm, partially adapted from [134]. This algorithm uses the last-known code con-
tent, the original location within the file, and the original surrounding code (all of
which are saved with each code link) to find the most likely candidate code refer-
ence. We then weigh the probability that the location is correct through a combi-
nation of calculating the edit-distance between the two versions, the edit-distance
between the surrounding lines of code, and the difference between the candidate
line(s) of code and the original location, with a closer location being weighted higher.

If there is a low score or no matches, we mark the anchor as invalid and the
corresponding text in the story as in need of review. To assist the author in finding
either a new location to link the story text to in the code or to discard the link, we
present additional metadata about what the code looked like and where it was last
located (see Figure 5.2-3, where it says “Showing original version below...”).

For definition references, the system searches the internal representation to see
whether the identifier is defined at its last known location. If the definition is not
there, the search will expand outwards to see if the identifier is defined in a different
file and, if so, attaches to that location, but marks the link as potentially invalid,
considering it may be a different identifier that just happens to have the same name.
If it is a local definition (e.g., a property named bar that is part of class Foo) the
system will check that both the class Foo and the property bar exist. If the system
cannot find a definition for the particular referenced code entity, the system uses the
text-and-location based re-anchoring algorithm. If the algorithm does not return a
result of a sufficiently highly-weighted likelihood, we mark the reference as invalid,
and the surrounding text within the code story as in need of review by the author.

A similar approach is used for checking identifier references in the code. We be-
gin by seeing whether there are one or more references in the code in the last-known
scope in which the reference was used. If there are multiple candidate matches, we
find the reference with the most similar AST path to the saved code anchor informa-
tion. If there are no candidate matches, we once again fall back on the text-matching
algorithm and, if the result is inadequate, mark the text within the story as poten-
tially invalid and in need of review.

By attempting to automate the process of re-matching the story content to the
corresponding code and suggesting potential edits to make, we attempt to lower the
workload for the author in maintaining the documentation. “Valid” code links have
no highlights. “In need-of-review” code links (shown in Figure 5.2-2) are highlighted
in yellow as a warning to readers. “Invalid” code links are highlighted in red to draw
attention to this part of the story.
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5.4 Evaluation of Sodalite

5.4.1 Study Design

In order to assess the usability and usefulness of Sodalite, we ran a small user study
to test both the authoring and maintaining aspects of Sodalite. Participants were in-
structed to use Sodalite to document some code of their choosing. We then observed
them as they chose to document whatever information they saw fit.

To evaluate the maintenance features, participants took their documented code
and reverted to an older version of their code. We considered requiring participants
to document an old version of their code, but decided against this since we did not
want the study to become a test of how well the participant’s remembered their old
code and developers are not typically documenting their old code. Therefore, they
documented the current version, and we pretended that an old version was a newer
version.

Participants were instructed to look through their project’s GitHub history to
find a version that was many commits behind the version they documented and
involved edits to any files that they ended up documenting during the authoring
portion of the study. Upon finding an appropriate commit, participants checked out
that version of the code and re-ran Sodalite, which triggers the maintenance system
to try and find appropriate re-anchoring points. The first author and the participant
stepped through each code link within the stories to determine whether the system
chose the “correct” action, meaning the participant agreed with the system’s deter-
mination of whether the link was “valid”, in “need of review” or “invalid”.

We recruited 4 participants (3 men and 1 woman), hereafter referred to as P1
through P4, using study recruitment channels at our institution and advertisements
on Twitter. All participants were required to have some amount of experience using
JavaScript or TypeScript, to have a project written in one of those programming lan-
guages that they were willing to document, and to regularly use Visual Studio Code.
All sessions were conducted over video conferencing software and the sessions were
recorded. Participants had, on average, 12.25 years of professional programming ex-
perience and considered themselves proficient in JavaScript and TypeScript.

For analyzing the authoring experience, we captured how many stories the par-
ticipants authored, how long each story was, what type of templates the partici-
pants used, how many code links they chose to include across how many files, and
what types of code links they were. We additionally reviewed the recorded videos
to count whenever the participant navigated through the document using the code
links, and counted whenever a participant copied and pasted or deleted a code link.
We additionally noted any usability issues participants discovered with the tool.

To assess how well Sodalite did at maintaining the code stories, we computed the
false positives, false negatives, true positives and true negatives for each code link
given the participant’s evaluation of whether or not Sodalite correctly re-attached
the code link. We additionally logged what the offset was from the code location
during the authoring session to the maintenance session, along with the total diff
between versions, and what type of re-attachment strategy the system used (e.g.,
text-based, AST based, etc.).
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5.4.2 Study Results

All participants were able to successfully use Sodalite to author at least one code
story that utilized Sodalite’s features, and agreed with Sodalite’s re-attachment de-
cisions, on average, 86.5% of the time. We further discuss participants’ experience
using Sodalite’s authoring and maintenance features.

Authoring

The 4 participants authored, in total, 15 stories, with 2 participants each writing one
story, and the other 2 participants authoring 6 and 7 stories, respectively. On aver-
age, participant’s wrote 238 words (min = 136, max = 312, std. dev. = 75.4) during
the 45 minute authoring time. The participants in our study chose code repositories
of varying purposes, sizes and complexity to document. Participants, on average,
chose to document 3.25 files. Our participants chose to document a Google Chrome
extension, a Visual Studio Code extension, a browser game, and a personal website.

Across all stories, participants created 52 code links, with each participant, on
average, creating 13 (min = 11, max = 18, std. dev. = 3.36). 18 of the code links were
pointers to definitions of identifiers within their code2, 7 were identifier references,
and the remaining 27 were “code ranges”. In their stories, participants, on average
created 12.75 code links.

The code links were represented in different ways within the code story. 29 of
the 51 code links were attached to text in the code story that was just the name of the
identifier or the expression the user had selected. Notably, 18 of those 29 code links
were definitions of particular identifiers, where the story sought to explain some
detail about that identifier. The remaining 22 code links were attached to text that
was part of a sentence within their code story. This split in usages suggests that
supporting both of these ways of referring to code helped support different ways in
which participants wanted to talk about their code.

Participants sometimes used their code links to help them navigate through their
code, using, on average, 41% of their code links at least once to navigate through
their code (min = 0, max = .722). Participants would sometimes check, after includ-
ing a code link, where that link went as a way of assessing the reader experience.
P4, in particular, used the navigation features often, revisiting the majority of their
code links to review the other places in which the code was referenced and used
their links to navigate 13 different times across the session. This suggests that the
code links may be useful for navigating through a code base, even when authoring
documentation.

Maintaining

Sodalite made the correct decision of either re-attaching or not re-attaching 44 out
of the 52 code links, a success rate of 86.5%. Of the incorrect links, 7 were because
the system could not find an attachment point, despite there being one within the
code, and 1 was because the system erroneously found a location that it thought
was correct when it was not. The majority of cases were that Sodalite successfully
re-attached a code link, at 36 instances. Eight code links had changed in such a way
the system correctly marked them as needing review. The reversions averaged 100
lines of code lost (min = 53, max = 137, std. dev. = 38.92) and 49 lines of code added
(min = 3, max = 95, std. dev = 51.97) per file.

2P1 made exclusively this type of code link, comprising 11 of the 18 total definitions.
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Sixteen of the correctly re-attached links were definitions, in which the re-attachment
strategy was to find a point within the file in which the named entity was defined.
Given the relative broadness of this strategy and the specificity of the named func-
tions or classes participants wanted to document, all but 2 definitions were able to
find an appropriate point somewhere in the document. This strategy may not work
as well if a method or class is renamed, but that did not happen to occur in any of
the participants’ versions. The reference re-attachment strategy also worked well,
with 8 of the 10 references being successfully re-attached in an appropriate location.

Perhaps more interestingly, the 8 cases that the system correctly marked for re-
view occurred in different situations, including when some code had been com-
mented out, the underlying semantics of the code changed significantly enough such
that the text in the story was no longer valid, and when the code links’ correspond-
ing definitions did not exist. One such instance is shown in Figure 5.2 in which the
original code link and surrounding text states that a value, hot, should be set to true.
However, the code in the version the user has opened has hot set to false. Two of the
cases occurred because the definitions for the linked methods did not exist in that
version of the code.

The single false negative case, where Sodalite missed a change, also occurred us-
ing the text-based matching algorithm. The anchor was originally placed on an else
keyword, but, when the prior version was pulled in, the system placed the code an-
chor on a completely different instance of else. This other location was closer to
where the original link was and, since else is such a common keyword, the system
found multiple reasonable locations but selected the incorrect one. For identifier
references, Sodalite flags situations like this, but the system does not currently sup-
port that for keywords. Future versions of Sodalite would benefit from introducing
more heuristics about the context in which the code appears, including any logical
dependencies, such as an else statement’s corresponding if statement.

5.5 Discussion and Future Work

Our evaluation lends evidence to the claim that in-editor authoring and maintaining
of documentation can be supported with Sodalite. Participants succeeded in creat-
ing code stories and, when faced with changed code, the system was very successful
in identifying problematic references, and relatively successful in choosing the ap-
propriate action to take.

A current limitation of Sodalite is that all of the mechanisms for determining
whether or not the story is out-of-date are contingent upon the story including code
links. The expectation is that, given Sodalite being located within the IDE, devel-
opers will naturally utilize that context and reference their code within their code
stories. Indeed, all participants stated in the post-task survey that they valued the
ability to link their text to their code. Nonetheless, future versions of Sodalite may
benefit from additional mechanisms for assessing the validity of the text in compar-
ison to the code, for example, through leveraging crowd-sourcing mechanisms for
quality control [6, 38].

Another benefit of having even better mechanisms for identifying out-of-date
code stories is to notify documentation writers and/or developers when their story
has gone out-of-date. It is a known problem that updating documentation is a task
that developers typically put off – while Sodalite attempts to make updating easier
through marking places for review, the system does not require that the author take
any action. One can imagine an additional feature to Sodalite that allows stories to
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be marked as “very important”, in which case developers could immediately be no-
tified if they make a breaking change, while lower priority stories can be addressed
on the developer’s own time. In the proposed work which involves integrating So-
dalite with the Meta-Manager, Meta-Manager’s constant listening for change events
may be leveraged for real-time detection of code links going out-of-date.
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Chapter 6

Meta-Manager: Meta-Information
for Question-Answering

This chapter is adapted from my paper:

[66] Amber Horvath, Andrew Macvean, and Brad A. Myers. 2024. “Meta-
Manager: A Tool for Collecting and Exploring Meta Information about Code”.
Currently in-submission.

6.1 Overview

When developing and understanding code, as previously discussed, developers are
managing many types of information that come in different forms. The previous
chapters explore how this information can be externalized and made more useful
through tooling approaches that leverage the context of the source code. However,
this externalization requires additional cognitive and physical effort by the initial
author [12, 25, 62, 80, 141], which can be a deterrent from using these types of tools,
and only capture what is expressly written by the developer, which, while useful
for capturing information that may exist only within the head of the developer, can
miss other interesting or useful contextual meta-information that was created dur-
ing the sensemaking [98, 99]. Nonetheless, information related to the history and
implementation of code, while often not expressed by the developer [94], is often
useful in answering historically “hard-to-answer” questions about code, specifically
those related to rationale [88, 91].

In this chapter, we explore capturing code editing and history information traces
at scale through an automatic, event-driven tooling approach. We isolated editing
events that we expected would help developers in answering some of these ques-
tions, such as copy-paste events to help with understanding where some code origi-
nated from and web search events and additional meta-information from web pages
including Stack Overflow and ChatGPT for answering why some code is written a
certain way. We instantiated this event-driven code provenance model in our tool,
Meta-Manager. Meta-Manager translates this information into key events along a
code history timeline visualization that allows developers to explore how, when,
and where some code came to be. This visualization and accompanying details pan-
els support filtering and searching to help developers isolate and investigate the
information relevant to the specific parts of the code that they are investigating. We
found that users could use its code history exploration support for answering other-
wise impossible-to-answer questions about code.
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FIGURE 6.1: Meta-Manager as it appears within Visual Studio Code: the pane appears in the bottom
area of the editor, with the left area displaying a visualization of the history of the code file over time,
while the right area displays information about a particular code version.

6.2 Meta-Manager

We developed Meta-Manager, a Visual Studio Code extension with an accompa-
nying Chrome browser extension, that organizes and keeps track of code editing
history, with a particular focus on extracting interesting events in the code history
(see Figure 6.1). In order for Meta-Manager to begin logging code versions, the user
does not need to take any actions beyond installing the extensions. On each file save,
Meta-Manager will log a new version and perform an audit of the file to see if there
are any new blocks of code to track. To investigate the code history, the developer
can navigate to the “Meta Manager” tab in the bottom area of the editor — doing
so will render the edit history of the user’s currently-open file. Whenever the user
opens a file, the Meta-Manager will render that particular file’s history.

With the Meta-Manager pane open, a developer can explore their code’s history
in a variety of ways. The default view of the code history, as shown in Figure 6.1,
will annotate the code timeline with a variety of event labels, which correspond
to particular code versions where something that might be of interest happened. To
navigate to a particular code version, the developer can either click on the event label
(Figure 6.1-4) or use the scrubber (Figure 6.1-1) to drag the scrubber to the version of
interest along the x-axis. While scrubbing, the right side of the Meta-Manager view
will update with information about that particular code version, including what the
code looked like at that point in time.

With a search box and/or filters, the developer can find other related events and
search based upon the content within the code version (Figure 6.1-6, 9). With the
search box, developers can search backwards through time for any text that ever
appeared in the code. The filter buttons operate on the current block or function
(which is the activate function in Figure 6.1-9). “Show Copy Events” will filter the
timeline to show all points at which code within that block was copied. “Show Paste
Events” will, similarly, filter the timeline to show all points at which some code was
pasted within the block. “Show Events with Online Code” will filter to show only
instances in which that block of code had some code pasted from an online source.

Once the user has found a code version of interest, they can explore its history.
The history view on the right displays a list of code boxes, where each box cor-
responds to a blocks of code within the file. These blocks then correspond to the
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FIGURE 6.2: How the code box looks when expanded to show a code version – in this case, a “Paste”
event version.

different colored parts in the visualization – in Figure 6.2, the large blue area in the
chart corresponds to the growing, shrinking, and moving of the activate function.
In the case of nested blocks (e.g., a method within a class), the boxes will be indented
and the colors in the visualization will overlap, such as the violet area on the chart
covering the dark blue. Each code box (Figure 6.2-8) will display meta-information
about that particular code version, including when the code was edited, who it was
edited by, and what the code looked like at that point in time (see also Figure 6.2-3).

A key design feature of Meta-Manager is tracking events that happen to the
code over time. For certain events, additional meta-information will be shown on
those particular code versions. For example, in Figure 6.2, this particular version of
the method getConfig had a paste event, where the user pasted in the code const
searchQueryTerm = ’//findme’; on line 6. The version adds additional informa-
tion such as where that copy came from (in this case, the file “src-extension.ts”).
Clicking the “See Copy” button (Figure 6.2-1) will either filter the timeline scrub-
ber to show the point in time at which the copy occurred if the copy happened in
the same file, or will display a preview of how the copied code looked at the time
of the copy if the code that was copied came from a different file1. “See All Other
Paste Locations” will similarly filter the timeline to show other points at which that
same code was pasted, and/or show previews of other locations in which the paste
appeared outside of the current file.

In cases where code was pasted from an online source, Meta-Manager will pro-
vide additional meta information about the web page that the code was pasted from,
and, if available, what the original user was attempting to do. Meta-Manager’s sup-
plementary browser extension is designed to work with some popular programming
learning resources, including Stack Overflow, GitHub, and ChatGPT2. If the browser
extension detects that the user is on one of these web pages, it will extract website-
specific information (e.g., the thread name of a ChatGPT thread, or a Stack Overflow

1We show a preview rather than navigating a user out of their current file and changing the whole
timeline for the other file, since this would cause the user to lose their current context. Clicking on the
preview can cause this navigation to happen if the user wants.

2We envision this list being substantially expanded to include other commonly-used resources
where code is copied from, such as the official documentation for languages and APIs.
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question and vote count) and listen for copy events. If the Visual Studio Code ex-
tension detects a paste which matches the content of the browser extension’s copy,
this additional information will be transmitted to the Visual Studio Code extension
to be associated with that paste. The hypothesis is that the query text can be a good
signal of the developer’s original intent for the code, which has been supported by
prior work [80, 100] and our observations.

Similarly, if the user makes a programming-related Google search3 prior to vis-
iting these websites, their initial query and visited web pages will be included with
the meta information about the pasted code. This information about the user’s web
browsing history and eventual copied code can then be seen with the paste version
(Figure 6.1-10). Clicking the “See More” button will pull up a preview of the web
page in the Meta-Manager pane of the editor, and highlight the part of the code on
the web page from where it was copied.

In order to help developers navigate the timeline and find specific versions of
interest, users can search through the code versions. Users can search across time
using either code that they have selected in their current code version (Figure 6.2-1,
“Search for Selected Code”) or directly through the code editor by selecting some
code in their file, then using the context menu to select “Meta Manager: Search for
Code Across Time”. These two searches differ slightly from one another, in that the
search using the code box will search forwards in time from the specific code version,
while the search from the code editor will search backwards in time (since the edi-
tor code view always shows the current version of the code). Both searches utilize
the edit history by modifying the query given how the code changes across each
version. This means that the search will attempt to expand if the selection grows,
shrink if the selection shrinks, and update the code query content to match on given
variable names and other constructs changing over time. For example, if a user
searches backwards in time on the code const match = 10 and Meta-Manager de-
tects a change in that expression, the query will update to search on the new expres-
sion e.g., const match = 12 such that, as we continue moving backwards through
time, we will be looking for a more accurate representation of that code at that time.

When a search is performed, the timeline will update with events marked “Search
Result” for events affecting the specified code, where the code differs in some way
from the previous version. This is to prevent the search results from being flooded
with events where the code is exactly the same, but has either moved as a result of
other code above it being edited, or not changed at all. When looking at a search
result code version, the part of the code that matched the user’s query will be high-
lighted in orange. The search will also look out for significant edits made to the
code. This includes when the searched-upon code is initially added, removed, com-
mented out, or commented back in. These events are specifically marked on the
timeline with a label corresponding to the type of edit the searched-on code experi-
enced (e.g., “Commented Out”).

Since the sheer amount of code versions will accrue over time, Meta-Manager
allows developers to zoom in to parts of the visualization that they find particularly
interesting or have a large number of relevant events in a short amount of time.
Users can do this by setting the scrubber at the start of the edit history they want to
zoom in to, then hold the shift key and click to the end of the zoomed portion. The

3We consider a programming-related Google search to be one in which popular programming-
related websites appear in the search result list. We acknowledge the potential privacy problems with
this feature, and consider the current prototype to mainly be an evaluation of the advantages of doing
this, and expect that a more complete tool can provide more control over what is saved from the
browser, as in [100].
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FIGURE 6.3: A zoomed-in portion of the timeline shown in Figure 6.1. This zoomed-in portion shows
around 120 edits between Version 710 and Version 830, with the scrubber set around Version 740, when
a user pasted code from Stack Overflow.

visualization will update to show a slice of the editing history (Figure 6.3), which
can be eventually dismissed with a “Reset” button.

6.2.1 Background and Design Goals

In designing Meta-Manager, we aimed to collect the most amount of potentially
meaningful information with the least amount of effort required by the developer,
and then present that information in an organized and explorable manner. Consider-
ing how cognitively demanding programming itself is, we wanted the interactions
with Meta-Manager to be familiar (i.e., support traditional searching and filtering
mechanisms) while pulling out particular events of interest that may indicate more
important changes happening to the code. To that end, we chose to focus on copying
code, pasting code, commenting in and commenting out code, and introducing or
removing code that the user has shown interest in. We chose these particular activi-
ties because of how they relate to some of the previously-reported “hard-to-answer”
questions about code; we envision logging these activities may help with answering
the following questions:

• How has this code changed over time? [91, 146] Developers often try and un-
derstand the evolution of some code in service of answering a question that is
pertinent to their current task. For example, this may help while investigating
when a bug was introduced [147], finding when some code was last used in
service of understanding how a feature changed over time [171], or finding a
snippet of code that was edited repeatedly to understand where the original
developer had issues [91, 94, 147]. Isolating when these particular changes
happened can be impossible in the case that the intermittent version is not
logged in a version control system (which is often the case in situations where
a developer is trying out multiple solutions), or very difficult to find even if
there. We address this challenge through making the code history viewable,
interactive with a scrubbing functionality, and searchable, with situations such
as code being removed or commented out explicitly called out in the version
history’s timeline.
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• Why was this code written this way? [83, 91, 146] A commonly-reported activ-
ity among developers when understanding unfamiliar code is reasoning about
why it is written the way that it is. This information is typically only known
by the original author during the time at which the code was written and, if
not written down, is usually lost. On the off chance it is recorded, it is most
likely preserved in the form of a random Git commit message or code review
comment, which are often too difficult to forage through [149]. When the code
of interest results from a paste or AI auto-complete event (e.g., from CoPi-
lot), then we posit that, by providing contextual clues about the original code
author’s intent through recording their web activities and connecting these ac-
tivities with the relevant code edits, later developers can use this information
to better reason about what the original developer was trying to achieve. Lit-
erature has reported that developers issue, on average, more than 20 search
queries related to their programming every day – capturing this information
and associating these queries with their related edits may serve as useful in-
formation for later developers [11, 170]. In cases where the code of interest is
not related to an event Meta-Manager currently logs, we envision that these
“why” questions may be supported through other contextual cues, which we
discuss in Section 6.4.

• What code is related to this code? [36, 91, 146] Oftentimes, when contribut-
ing a change to a code base, developers must reason about how their new
code is related to many other parts of the code beyond simply what could be
found in a call graph. Other relationships that developers reason about are
what parts of the code are commonly edited together (e.g.., the “working set”
of code patches that makes up a particular feature [18, 32]), and, if introduc-
ing a change or refactoring some code, what other parts of the code must be
updated. If code was copy and pasted around, that is a strong signal that the
copy-paste patches are related, so we posit that investigating those versions
may help with understanding otherwise invisible relationships between code
patches and their pasted “descendents”. We further hypothesize that this can
help with determining code locations to update when introducing a change,
determining what code served as a template for some other code, and, per-
haps, finding what parts of the code base need to be refactored in order to
reduce redundancy [79]. Similarly, even if copy-and-paste are not used, code
which is edited at the same time can be investigated by scrubbing along the
timeline around edits of the current code4.

• Where did this code come from? [146] In 2021, Stack Overflow reported that
one out of every four users who visit a Stack Overflow question copy some
code within five minutes of hitting the page, which totals over 40 million
copies across over 7 million posts in the span of only two weeks [130]. Given
this ubiquity of online code and developers reliance upon it, researchers have
investigated the trustworthiness of code that is sourced from online resources
[10], and, with the rise in large language models (LLMs) for code generation,
research is beginning to focus on the quality of AI-generated code as well [78,
95, 97]. Typically, it is not easy to see what code came from AI or from an online
source, versus what was written by developers themselves. While developers
occasionally add code comments that cite where some pasted code came from,

4In the current prototype, this only works for edits in the same file — we leave such cross file
investigations for future work.
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this does not happen very often [9] and, when it does happen, the links have
a tendency to break over time and, going through the effort of recreating the
context in which that code was initially added and determining whether it is
still valid is laborious [57]. Our system keeps a copy of the web page content
that is relevant to the copy-paste event which is stable even if the link becomes
no longer valid, isolates the part of the page that is relevant to the copy-pasted
code, and presents this information in context, such that there is no costly con-
text switching required by the developer.

It is also worth noting that all of these questions are phrased about “this code”,
which is the language used in the original research. This phrasing suggests that
developers are typically discussing these questions at the snippet or block level [63],
as opposed to the file level, which is what typical version control systems operate
at. Our system differs by tracking code at the block level across files and supports
drilling down to a specific line or lines of code interactively.

6.2.2 Implementation

The Meta-Manager, both the Visual Studio Code editor extension and supplemen-
tary browser extension, utilize TypeScript for the logic and React [46] (with D3.js
[119] for the chart in the Visual Studio Code extension) for the front end. FireStore
[41] is used for authenticating the user, establishing a shared connection between the
browser extension and Visual Studio Code extension, and logging the code revisions
and metadata in the Meta-Manager database.

The code logging in the editor works by utilizing the TypeScript abstract syntax
tree (AST) on system launch to parse each file in the user’s currently-open repository.
The system then attempts to match each block within the parsed-AST to known code
entities stored in the database. This matching uses a variety of heuristics including
text-matching using the “bag of words” approach discussed in [168], the last-logged
structure of the AST (such that known relationships between blocks are prioritized),
the user’s current Git commit and the logged versions’ commits, and the line dif-
ference between blocks. In the case that a block in the history is not found in the
current version, we consider it deleted, and, to cut down on superfluous versions,
do not pull in its history5. If an unknown node is found in the current code AST,
we assume it is newly created and begin tracking its history. We additionally listen
for any document change events to capture whether or not a new block is added or
removed to begin tracking or stop tracking the node’s history. Each node within the
system subsequently manages its own version history and the events that happen
to it, such that users can drill down even further to see, e.g., when a particular code
block was introduced or removed. While the user is editing their code, each node
keeps what we call a “change buffer” of edits that happen to the node, with each
edit parsed to determine whether it is an edit of interest, such as a paste event or a
block code comment. In the case of a copy, the system identifies which node experi-
enced the copy such that a connection between the respective versions can be made
between that node and the node that receives the paste event, even though the copy
event itself doesn’t actually change the code.

5Note that, given the nested structure of the AST, if a missing node’s parent is present in the user’s
code, the user can still see the missing code in the parent’s version history and query upon it, if they
want.
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6.3 Lab Study

In order to assess how well Meta-Manager performs in helping developers answer
hard-to-answer questions about code history, we ran a small user study. Participants
were tasked with using Meta-Manager to explore an unfamiliar code base using the
system to answer questions we asked them about the history of the code, without
modifying or running the code. We chose to have a single condition (as opposed
to a between or within subjects study design) in which participants used the tool
due to the fact that the questions we asked participants would, without the tool, be
unanswerable, meaning there is no real control condition we could grade the exper-
imental condition against. This was done deliberately considering we specifically
designed our tool to support answering these types of questions. Thus, ensuring
that the tool succeeded in that regard was our primary goal of the study, along with
assessing the usability and utility of the tool.

The lab study consisted of a tutorial with Meta-Manager in which the exper-
imenter and participant walked through each feature. Then, the participant and
experimenter walked through different parts of the code base and the participant
would use Meta-Manager to try and answer each of 8 questions (Table 6.1). Once the
participant answered each question, the study ended with a survey to capture partic-
ipant demographic information, along with their experience using Meta-Manager,
and their own history in attempting to answer the types of questions Meta-Manager
is designed to help with answering.

6.3.1 Method

Code History Creation

Prior to running the study, I created a code base to perform the experiment on. Given
that Meta-Manager has not existed long enough to naturally accrue a history log that
would be in line with real, prolonged use of the tool, a code history was artificially
created. We did this because we did not want to bias the study in favor of the tool
purely because there are a small amount of code versions, thus finding an answer
to a question is trivial. The artificial code base is based upon a real code base [150]
for a Visual Studio Code extension created by an external group unaffiliated with
Meta-Manager, which functions similarly to CoPilot. This repository was chosen
due to the fact that much of the code centers around the Visual Studio Code API,
which few developers are familiar with, thus lowering the likelihood of a participant
performing well purely due to having more background knowledge in the domain.

To create the artificial edits, the first author independently rewrote the code base,
following along with the Git commit history in order to capture “real” versions
of the code. While writing the code present in each commit, the tool was logging
these real versions, but was also recording individual edits (e.g., add 1 line that says
const searchResults = match(searchResults); in file search.ts on commit 4acb)
that were then artificially inserted at realistic intervals across each code’s history,
given the correct file, time period, and node. The first author intentionally did not
write “perfect” code that matched what was in each commit, to account for the more
realistic intermittent versions the tool would capture in real usage. The author also
intentionally added events that we are particularly interested in investigating, such
as copy-pastes, across each file’s history, along with simulated copy-paste events
that match the frequency reported in prior literature on how often developers copy-
paste during a normal programming session [70]. We also added realistic copy and
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pastes from Stack Overflow and a few from ChatGPT (even though the code was
actually written before ChatGPT was available) since these will be increasingly im-
portant, with these events occurring less frequently than within-editor copy-pastes.
Using this technique, we generated a code base consisting of 5,661 edits in 1,328 lines
of code across 10 files and 28 different code blocks.

Tutorial

The study session began with the experimenter showing the participant how to use
each feature in Meta-Manager. This included an explanation of the visualization
(including how to zoom in to the visualization), how to use the scrubber to move
through the code versions, how to search from both within the code editor and
within a code box, how to filter to view only copy events, paste events, or paste
events from online, and how to view each corresponding copy and paste between
code versions. This tutorial was done in one of the files within the created code base,
such that the participant could see and understand the context of the code base, but
none of the code history task questions related to anything in that particular file.

Task

For the main task, each participant was required to use Meta-Manager to answer 8
questions. Each question was designed such that it would represent at least one as-
pect of a hard-to-answer question we are interested in (see Section 6.2.1) and would
require the participant to use some feature of Meta-Manager to answer. Table 6.1
lists each question, along with the steps a participant could do in Meta-Manager to
answer the question. The solution in the table represents the most efficient way to
answer a question, but each question can be answered using other methods. For
example, for question Q6, a participant can choose to search forwards in time on
the AI generated code, which will pull out instances where that code changed, but
they can also scrub through the code versions using the scrubber up to the present
to visually see how the code is edited over time. Participants had 10 minutes per
question and were not allowed to edit or run the code, or search for information
online. When a participant felt they had come to an answer, they were instructed to
state their answer and they would move on to the next question.

The study was designed to increase in difficulty as participants moved into files
with more and more versions to filter and search through. Questions 1 and 2 were
in a file with 90 versions, Question 3 and 4 were in a file with 619 versions, Question
5 was in a file with 727 versions, and questions 6 through 8 were in a file with 1,302
versions.

Analysis

For each participant, we recorded whether or not they got the correct answer for
each question and how long it took them to come to the answer. “Correctness”
was determined objectively by whether or not they found the correct code or code
version that contained the answer and whether the participant’s summation of what
they learned was accurate. If the participant did not finish within 10 minutes, the
question was marked as incorrect. We additionally reviewed the video recordings
to see what features of the tool and strategies participants used when coming to an
answer.
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Question in Task Question from Literature Solution

Q1. In config.ts, there is a regex for search pattern matching.
Can you tell me what it is matching on and why?

Why is this code written the
way it is? [83, 91, 146]

Find paste from ChatGPT, read user’s
ChatGPT query

Q2. There is a bug in the commented out Promise code. Can
you find where the bug was and what happened?

How has this code changed
over time? [91, 146]

Find where Promise was initially commented
out and look at versions before that event

Q3. Prior to using parseHTML, the author was using a
different API - what was it and why did they stop using it?

Why is this code written the
way it is? [83, 91, 146]

Search backwards through time to when
parseHTML no longer exists, see what code
was there before, and see Stack Overflow post
about the problem with the prior API method

Q4. Recently, some code was added to search that came
from a different file – can you find that code and explain
what changed?

Where did this code come
from? [146]

Filter to see pasted code, find paste event
with code copied from a different file, then
search for that code in the file

Q5. Look at lines 68 to 70 – there is a commented out
forEach loop. Can you find the last time it was used and
explain why it was removed and what it was replaced with?

What code is related to this
code? [36, 91, 146]

Search on commented out code, click on
“Commented Out” event, find Stack
Overflow post near event with replacement
code

Q6. What code was generated by an AI system and what
ended up happening to it?

Where did this code come
from? [146]

Filter to see ChatGPT code, then search
forwards in time on that code

Q7. What were all the different things that the programmer
tried when setting the match variable?

How has this code changed
over time? [91, 146]

Search backwards in time on match, look at
events

Q8. Some code from activate was moved into a different
file. When did this happen and what was the code that was
moved?

Where did this code come
from? [146]

Filter to code copied in activate, then see
corresponding paste locations

TABLE 6.1: Each question that was asked during the task, along with what “hard-to-answer” question
from prior literature it corresponds to, and the steps taken in Meta-Manager to answer the question.
Note that some questions represent more than one hard-to-answer question, such as Q5, which both
asks what code is related to the commented out loop, but also why the loop was commented out, which
is in line with “why is this code written the way it is”.

6.3.2 Participants

We recruited 7 participants (6 men, 1 woman) using study recruitment channels at
our institution, along with advertisements on our social networks. All of the partic-
ipants were required to have some amount of experience using TypeScript and be
familliar with Visual Studio Code. Participant occupations included 4 professional
software engineers, 2 researchers, and a financial operations engineer with a com-
puter science background. The average amount of years of professional software
engineering was 3.16, self-reported competency with JavaScript was 4.5 (out of 7,
where 7 is expert), and an average self-reported competency score of 3 for Type-
Script. All study sessions were completed and recorded using Zoom and partici-
pants used Zoom to take remote control of the experimenter’s computer in order to
use the tool. Participants 1 through 7 are hereafter referred to as P1 through P7.

6.3.3 Results and Discussion

Table 6.2 breaks down how often each question was solved and how long, on aver-
age, getting the correct answer to the question took. Questions 3, 4, 5, and 8 were
answered correctly by all participants and did not take relatively long to solve. Par-
ticipants also solved these questions in the most consistent manner, with all partici-
pants starting with the same first step that was outlined in Table 6.1 as the intended
solution path. Notably, these questions correspond to 3 of the 4 types of hard-to-
answer questions discussed in Section 6.2.1, suggesting that the tool was successful
in supporting questions including “why is this code written the way it is”, “where
did this code come from”, and “what code is related to this code”. Additionally, in
our post-task survey, participants rated Q5 as the most similar to frequently asked
questions they have, suggesting that our tool’s ability to answer that question is par-
ticularly valuable.
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Question Outcome Time Spent

Q1. In config.ts, there is a regex for search pattern matching.
Can you tell me what it is matching on and why?

6 correct, 1 incorrect 3 minutes 28 seconds (min: 58 seconds, max: 6
minutes, 32 seconds, std. dev.: 1 minutes, 59
seconds)

Q2. There is a bug in the commented out Promise code. Can
you find where the bug was and what happened?

4 correct, 3 out-of-time 5 minutes 4 seconds (min: 1 minute, 58
seconds, max: 7 minutes, 2 seconds, std. dev.: 2
minutes, 24 seconds)

Q3. Prior to using parseHTML, the author was using a
different API - what was it and why did they stop using it?

7 correct 4 minutes 35 seconds (min: 2 minutes 23
seconds, max: 7 minutes, 38 seconds, std. dev.: 1
minute, 46 seconds)

Q4. Recently, some code was added that came from a
different file – can you find that code and explain what
changed?

7 correct 4 minutes 47 seconds (min: 2 minutes, max: 8
minutes, 8 seconds, std. dev.: 2 minutes, 29
seconds)

Q5. Look at lines 68 to 70 – there is a commented out
forEach loop. Can you find the last time it was used and
explain why it was removed and what it was replaced with?

7 correct 4 minutes 24 seconds (min: 1 minutes 57
seconds, max: 7 minutes, 12 seconds, std. dev.: 1
minute, 44 seconds)

Q6. What code was generated by an AI system and what
ended up happening to it?

5 correct, 2 out-of-time 6 minutes 36 seconds (min: 2 minutes 2
seconds, max: 9 minutes, 15 seconds, std. dev.: 1
minutes, 53 seconds)

Q7. What were all the different things that the programmer
tried when setting the match variable?

5 correct, 2 incorrect 5 minutes 18 seconds (min: 2 minutes 15
seconds, max: 8 minutes, 17 seconds, std. dev.: 2
minutes, 15 seconds)

Q8. Some code from activate was moved into a different
file. When did this happen and what was the code that was
moved?

7 correct 3 minutes 42 seconds (min: 1 minutes 14
seconds, max: 8 minutes, 35 seconds, std. dev.: 2
minutes, 17 seconds)

TABLE 6.2: Each question, its outcome and the average amount of time spent on it.

Participants varied in how long they took to answer each question, even in cases
where the majority of participants eventually did come to the correct solution. This
usually occurred when participants took unintended solution paths or had some
confusion about how the tool or parts of it worked, suggesting that the design of the
tool could be improved to make the intended functionality more clear. For example,
with Q8, P5 chose to filter for code that had been pasted into another file (i.e., clicked
“See Pasted Code”), but, since the question was asking for instances in which code
was copied (i.e., participants should click “See Copied Code”), this search did not
work. P5 also noted in their post-task survey that they typically consider copy-paste
as a single event, so, given how the tool treats them as two separate but connected
events, they experienced some confusion. In contrast, participants following the
most “optimal” path typically performed the task within 1 to 3 minutes. Given that
all of these questions were designed to be complex enough that they could not be
solved with one button click or search query in order to make them more realistic
and, since participants lacked any sort of contextual knowledge about the code base
to help guide them towards solutions, these results suggest that the tool can be a
practical way of answering these types of questions.

Notably, some questions were more challenging than others. Q2 and Q6 had the
lowest amount of correct responses and Q6, on average, took the longest amount
of time to solve when participants did come to the correct solution. With Q6, all
participants succeeded in identifying the code that came from ChatGPT but had a
harder time answering the second half of the question. Participants almost always
chose to search on the ChatGPT code across time but, given that the code was a large
function that had many edits applied to it, it was difficult to isolate what specifically
happened to the code, given their lack of context about the code base and how its
various functions are used. This issue of a larger lack of context was also why Q2
was challenging – since the participants did not know how the code was used in the
larger context of the project, it was difficult to isolate what part of the code contained
the bug. This suggests that Meta-Manager may be improved by supporting more
views that show how code is related to other parts of the code base outside of the
user’s current file.
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In terms of strategies, participants most often utilized the search feature as their
primary way of navigating through the timeline. This is not particularly surprising,
given the ubiquity of search in navigation, especially code navigation, and partici-
pants were able to use that strategy to solve their questions in most cases where it
was the intended solution. Note, however, that this search is backwards through
time and not directly through the current text like other familiar searches, but given
practice using the across-time search, participants were able to use it to support
their different types of questions. Specifically, Q3 and Q5 both require participants
to search backwards across time to find when parseHTML and a forEach loop, re-
spectively, were no longer used, and all participants were able to use the search to
successfully answer those questions.

Participants most often started their search using the context menu item in the
code editor windows, but would later switch to using the search from within a code
version in the Meta-Manager plugin user interface after finding a particular part of
the code they wanted to further drill down on. For example, Q3 is solvable using
this strategy by initially finding the instance in which parseHTML disappears and
the older API method, JSDOM, appears. 3 of the 7 participants used this method
for answering Q3. However, this question was also solvable by finding the point
in time at which the API change is made, then filtering in that time span for paste
events or Stack Overflow searches, as both of those events happened around the
same time as the switch – 4 participants were able to solve this question using that
approach. In general, the timeline labels were commonly used as a means of navi-
gating through the code history, with most participants opting to look only at events
that were marked along the timeline, and not bothering to look through versions in
between these labeled points.

In the post-task survey, participants reacted favorably to Meta-Manager. Partic-
ipants agreed that they would find Meta-Manager useful for their daily work (avg.
6.14 out of 7, with 7 being “strongly agree”) and enjoyed the features provided by
Meta-Manager (avg. 6.57 out of 7). Participants particularly liked the ability to see
where code from online came from within the context of the IDE as a way to see
what the original developer was doing, with one participant stating that they imag-
ined that this will be how they spend “most of their development time in the future,
with more code coming from AI” (P7). Participants desired improvements to the
user interface to make some of their interactions a bit more clear (avg., 4.3 out of
7), especially with respect to the interaction between the filter, search, and zoom op-
erations. Participants sometimes lost track of what filters they had in place when
searching, and vice versa, which caused confusion. Adopting the UI for sorting and
filtering from popular shopping websites might help alleviate these problems.

We additionally asked participants to rate each question asked in the study by
how often they have encountered similar questions in their own programming ex-
periences on a 5-point scale from “never ask” to “always ask” (Figure 6.4). Partic-
ipants reported asking questions similar to Q5, which asked about why some code
was introduced to replace some other code, most often, with 4 participants stating
they “always ask” questions like this. Notably, that is also one of the questions all
participants were successfully able to answer, which suggests the tool is useful in
answering this type of common, hard-to-answer question. Only two questions had
some participants state they never asked that question, which were the questions
corresponding to reasoning about where some code originated from (an AI system,
in this case) and what the previous developer had tried when implementing some
change. All questions had at least one participant say that they sometimes ask that
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FIGURE 6.4: Each question scored by participants in terms of how often they encounter similar ques-
tions in their own programming experiences.

question, which is both inline with prior research and adds more evidence that sup-
porting answering these questions is useful.

6.4 Future Work

Our lab study provided some evidence that Meta-Manager helps developers answer
hard-to-answer questions about code. However, this was in the context of a devel-
oper joining an unfamiliar code base with no real contextual knowledge of the code
or its history — while this allowed us to best assess how well the system works in
assisting developers in answering these questions in, arguably, the most difficult sit-
uation, future work would benefit from seeing how Meta-Manager helps developers
when they are working on their own code. Open questions remain in this situation —
given developers’ own mental models of their code base and, most likely, its history,
one can imagine that usage of Meta-Manager may change, as developers’ questions
about the code base may become more specific since they have more information
to work off of. Improvements to Meta-Manager to support more personalized in-
formation may be a richer querying system that supports project-specific terms or
time constraints, such as “show me all edits to this function between bug fix #124
and now”, or allowing users to define their own “events” outside of copy-paste,
code commenting, etc. that the system will automatically log as an event of interest.
Prior work has supported similar team and project-specific tagging of information in
software projects to help with source code navigation [154, 161] – extracting project-
specific tagged events as timeline events may also help developers with navigating
between code versions.

Additionally, there is existing meta-information about code project history that
Meta-Manager does not currently show, such as the boundaries between Git com-
mits along the timeline, or event labels for typical historical events like merged-in
pull requests. One can imagine changing the visualization to show visual bound-
aries between these events, which may also help to better visually convey to a user
why some block of code has appeared or disappeared as code commits are merged
together, pulled in, or checked out. This may also help make this information more
easily navigable, considering foraging through many Git events is a known chal-
lenge [75]. We additionally want to support more event capturing, such as when
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documentation-type code comments are edited,6 and other interesting code sources,
such as CoPilot. CoPilot, in particular, may be particularly interesting for logging
events with given that user’s edits that prompt CoPilot (especially in the case of nat-
ural language prompts to CoPilot to generate some code) may serve as strong signals
for what the code author was trying to do. Conveying more of this meta-information
in conjunction with more structured time information may give developers more
useful navigational way points for searching for code across time. Expanding the
types of meta-information Meta-Manager supports may help with answering other
types of programming-related questions, which the proposed work will explore.

Currently, Meta-Manager does not support saving or sharing specific code ver-
sions, queries, or filter settings. There may be situations in which it would be use-
ful to keep track of that information, such as for communicating with collaborators
about how and when a bug was introduced [92] or for saving a code version that a
developer may be considering reverting back to [75, 76]. This meta-meta informa-
tion (meta information about the use of the meta information about the code) could
be useful to help others perform similar sensemaking to the current user, based on
research [47] that multiple people through time often need to repeat previous peo-
ple’s work.

6In the current version of Meta-Manager, one can search on a code comment backwards through
time in the same way that regular code can be searched on, but better categorizing the type of code
comments, such as “TODO’s” or “bugs”, may make this information more comprehensible and search-
able.
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Chapter 7

Proposed Work

7.1 Introduction

In this work, we have investigated methods for improving comprehensibility of code
and code-related meta-information through strengthening the relationship between
these two rich information sources. We have explored the benefits of bridging code
and its meta-information across different sensemaking domains including under-
standing API documentation and comprehending unfamiliar code, and the results
have been promising with developers successfully creating and using the contex-
tualized information to perform better on development tasks and answer relevant
questions about code.

Despite this success, I recognize that we are currently in a transitory state of
software engineering with the rise of AI-generated code which naturally leads to
a new and growing class of meta-information. Recent reports claim that around
31% or more new code is generated from AI tools [95] and it is expected that this
number will continue to grow as AI tools continually improve and the barriers to
using them are lowered. With the rapidly growing capability of these tools, there is
reason to believe that more developer effort will go towards prompting these tools
and reviewing the generated code – a context in which additional meta-information
about the generation of this code may be helpful.

The systems developed during my thesis all captured different types of meta-
information in different development contexts. This includes understanding and
using API documentation (Chapter 3), making sense of code (Chapters 4 and 6),
and authoring and maintaining project documentation (Chapter 5). These systems
worked well in isolation, but there remains an open question of whether or not these
different types of meta-information may complement one another for supporting
new developer sensemaking activities. For example, Meta-Manager’s rich history
and versioning support, coupled with Sodalite’s documentation maintenance algo-
rithm may help maintainers know when the documentation went out-of-date – a
question which would be unanswerable with either tool in isolation.

To conclude this thesis, I propose extending Meta-Manager to unify all of the
types of meta-information my other tools support. This means supporting Adamite
and Catseye annotations and Sodalite documentation. During this extension pro-
cess, I will also explore how these new and unified forms of meta-information may
assist in the comprehension of AI-generated code. In Chapter 6, Meta-Manager
showed success in capturing some of AI-tool meta-information, including ChatGPT
thread information to supplement ChatGPT-written code with related rationale and
provenance data. However, the information provided in Meta-Manager only pro-
vides a slice of the whole iterative, prompt-driven development and debugging that
developers are doing with systems like ChatGPT. As described in [52], coordinating
with these systems is an iterative process in which user-intent and the AI’s response
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are refined while the user gains a deeper understanding of both their personal prob-
lem space and how to guide the AI towards a correct solution. I hypothesize that
these iterative steps can be captured and annotated in such a way that subsequent
users can follow along with this iterative sensemaking between developer and AI-
system to better understand how and why some code is written the way it is.

7.2 Proposed System Design

Meta-Manager has shown that code meta-information can be organized at scale by
utilizing an event-driven lens, where specific events are extracted and used for as-
sisting in navigation. I choose to extend Meta-Manager, as opposed to one of the
other systems, as a base system because it is the only system in place which directly
addresses the challenge of scale, meaning that adding new types of information to it
should not drastically lower the usability of the tool, which may not be the case for
the other systems. Further, given that Meta-Manager treats information as events
over time, many of the features in my other tools can be treated as “events”, such as
creating a new Sodalite code story. I plan on extending this design to support new
events that are relevant to the newly-integrated systems and workflows.

7.2.1 Visualizing Meta-Information

In its current form, the Meta-Manager visualizes and presents its information as
a stream along a linear timeline, with colors in the stream corresponding to code
blocks. This visualization approach made sense for the Meta-Manager as its primary
purpose was to collect and present meta-information over time. However, with the
addition of new types of meta-information, it is unclear whether this singular visual-
ization is still the most appropriate choice. While annotation creation, for example,
can be shown as an event along the timeline, if a developer is hoping to compose
multiple annotations across multiple code patches, the time of these various ver-
sions and events may become less relevant in favor of the relationship between the
annotations. In such a case, it may be more appropriate to present the annotations
as, e.g., a group or list of annotations, divorced from the timeline view. Other views
that may make sense are a branch view as a way of clustering and showing the pro-
gression of how some code and its meta-information changed given significant edits
and a “workspace” view where this curation can occur. I propose exploring the de-
sign space of how to display different forms of meta-information given the type of
meta-information and developer task.

7.2.2 Supporting Catseye Code Annotations

Catseye uses annotations to assist developers in tracking code-related information.
Choosing to annotate some code is an obvious signal that Meta-Manager can lever-
age and display on the timeline. Given an annotation’s content, an annotation may
be able to answer some of the questions the original Meta-Manager helped answer,
such as why some code is the way it is. Catseye and Meta-Manager had largely sim-
ilar design goals but took different approaches, with Catseye focusing on developer-
authored and tracked insights about code during active development while Meta-
Manager utilized code history to answer provenance-related questions. Both ap-
proaches relied upon associating some meta-information with the source code, thus,
Catseye and Meta-Manager meta-information can be merged given whether or not
they share the same source code at some point in time.
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Meta-Manager can further support Catseye annotations through lowering some
of the information collection cost. Meta-Manager automatically tracks blocks of code
and their change history through leveraging the TypeScript AST – Catseye code an-
notations could utilize this same information tracking “change buffer” for capturing
not only meta-information that Meta-Manager already supports (e.g., copy-pastes)
but also for information that Catseye previously required users to manually track.
This includes intermittent code versions, which are already automatically tracked
with Meta-Manager, and the versions’ associated outputs’ (which can be gathered
using the Visual Studio Code Debugging API). These annotation histories could then
be treated in Meta-Manager the same way code blocks are, including being visual-
ized on the timeline, tracking their own copy-paste events, etc.

A key aspect of Catseye annotations is supporting code navigation. As previ-
ously discussed in Chapter 6, Meta-Manager could be improved through support-
ing cross-file history exploration to understand and relate different pieces of code –
Catseye annotations, especially those which have multiple anchors across files, may
be another strong signal of related code that should be explored together in a shared
visualization.

7.2.3 Supporting Sodalite Documentation

Sodalite allows for in-editor documentation authoring, utilizing code links for con-
textualizing the documentation, and maintenance, in which the links are used to as-
sess the validity of the text. Like Catseye and Meta-Manager, the developer’s source
code is utilized for grounding this meta-information, thus the source code can act as
the point of unification for all of these tools.

Sodalite’s code links, like Catseye’s code annotations, can be tracked in Meta-
Manager’s history system. Through utilizing Meta-Manager’s saved history, we
can provide maintainers and readers of documentation even more meta-information
than what is currently supported. For instance, we can show how the documented
code changed over time, including how similar it is to when it was initially doc-
umented and/or last updated, when it became no-longer valid, if Sodalite found
the link to be invalid, who introduced the changes that “broke” the link, and so
on. In this way, Sodalite and Meta-Manager complement each other well – Meta-
Manager’s historical information “fills in the gaps” that Sodalite previously inferred
when determining out-of-datedness, while Sodalite provides the additional human-
generated information about the code that Meta-Manager previously could only ob-
tain when there happened to be web-based searches.

7.2.4 Supporting Adamite Annotations

Adamite is the only system that currently does not leverage the developer’s source
code, thus making its integration less straightforward than the previous two sys-
tems. Given that Adamite and Meta-Manager share the same FireStore instance
(thus, the same authentication system), one idea is to treat Adamite annotations
as events within Meta-Manager and associate the annotations with whatever code
was edited before and after the user made their Adamite annotation, where the au-
thenticated user serves as the connective property. This approach is obviously not
foolproof – for example, if the user annotates something unrelated to programming,
such as a review of a new camera, it would not make sense to associate that anno-
tation with any code, even if the user did write some code around the same time
that they made the annotation. To avoid this problem, I can envision improving
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Adamite’s text anchoring capabilities to take into account the type of web content
that is annotated. Text that is wrapped in <pre /> tags or <code /> tags is likely
code, which may have related code in the user’s IDE, especially in the case of API
documentation, in which it is possible to use the parsed AST to find instances in
which the annotated API method(s) are used. The Adamite annotation content could
then be associated with the relevant code, along with any user-added tags or an-
notation types. The Adamite information could also complement any web-based
copy-pasted code, which Meta-Manager already supports. This bi-directional rela-
tionship between the code editor and web documentation can be further explored
through extending Adamite to create annotations on code copied from the web that
point back to where that copied code is in the developer’s own project, which can be
used as examples of how the API is used in “real” a project.

7.2.5 Supporting AI-Generated Code

Some new forms of meta-information are the prompts used to generate some code
(ChatGPT, CoPilot), the AI-generated response (ChatGPT), and alternative code snip-
pets that the developer did not choose (CoPilot). Meta-Manager currently captures
ChatGPT prompts and responses, along with the thread URL, but does not capture
or associate the edits the developer makes to that code with any future prompts that
are made to refine the subsequent code to what the developer actually needs. Of-
tentimes, using ChatGPT or other chat-based AI systems requires the user to refine
their prompts, try out whatever solution the AI provides, and repeat until a satis-
factory solution is achieved. During this process, the developer both refines their
mental model of the problem space they are in, and, as a byproduct of this refine-
ment process, creates a log of what they tried and what did and did not work while
implementing their solution. We can improve the Meta-Manager to better illustrate
this iterative process as an explorable “sub-history” to further help with answering
questions like “why is this code written the way it is”, while also answering a new
class of “hard-to-answer” questions such as “how thoroughly was this code tested”
[146], which is a common concern with AI-generated code [97]. Meta-Manager also
does not currently annotate code generated by CoPilot as AI-generated code along
its history timeline, which we plan to rectify, along with capturing the prompt that
instigated CoPilot and the alternative solutions that were not chosen, which may
serve as useful meta-information for better reasoning about the correctness of the
code and what the developer was attempting to do when the code was written.

7.3 Evaluation Plan

I plan to conduct a controlled lab study to assess the utility, usability, and effective-
ness of this new, integrated system in helping developers make sense of unfamiliar
code. I would like to compare the system to both the original Meta-Manager and to
a repository with no additional tooling or information beyond what is present in a
“typical” repository (e.g., a README file, code comments, Git history, etc.). Addi-
tionally, I am interested in how this rich history can help developers when working
with their own code. To that end, I would like to deploy the new system as part
of a supplementary field study. The controlled lab study can provide evidence in
terms of how correctly developers can answer the history and rationale questions
we are interested in, while the field study can complement that information with
how well the system performs in helping developers answer their own questions as
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the system builds up a larger and richer history of their code base. I am particularly
interested in seeing how developers’ nascent mental models of unfamiliar code ver-
sus more robust mental models change how they interact with the tool and whether
these different use cases produce different questions. With these studies, I plan to
investigate the following research questions:

• Can the unified forms of meta-information about code answer developers’
questions about unfamiliar code?

• Can the unified forms of meta-information about code answer developers’
questions about their own code?

• How well does each type of supported meta-information map to known hard-
to-answer questions about code?

• How well do the integrated systems work together in supporting question-
answering in comparison to traditional methods?

7.4 Timeline of Completion

My goal is to complete my dissertation by August 2024. My proposed schedule is
shown below:

• December 6th, 2023: Thesis Proposal

• December 2023 - March 2024: Design and build proposed system

• March 2024 - May 2024: Run lab studies for the proposed system

• January 2024 - June 2024: Job search

• June 2024 - August 2024: Thesis writing and defense
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