
Using Annotations for Sensemaking About Code
Amber Horvath

ahorvath@cs.cmu.edu
Human-Computer Interaction Institute, Carnegie Mellon

University
Pittsburgh, Pennsylvania, USA

Brad A. Myers
bam@cs.cmu.edu

Human-Computer Interaction Institute, Carnegie Mellon
University

Pittsburgh, Pennsylvania, USA

Andrew Macvean
amacvean@google.com

Google
Seattle, Washington, USA

Imtiaz Rahman
imtiaznyc1@gmail.com

Hunter College
New York City, New York, USA

ABSTRACT
Developers spend significant amounts of time finding, relating,
navigating, and, more broadly, making sense of code. While sense-
making, developers must keep track of many pieces of information
including the objectives of their task, the code locations of interest,
their questions and hypotheses about the behavior of the code,
and more. Despite this process being such an integral aspect of
software development, there is little tooling support for externaliz-
ing and keeping track of developers’ information, which led us to
develop Catseye – an annotation tool for lightweight notetaking
about code. Catseye has advantages over traditional methods of ex-
ternalizing code-related information, such as commenting, in that
the annotations retain the original context of the code while not
actually modifying the underlying source code, they can support
richer interactions such as lightweight versioning, and they can
be used as navigational aids. In our investigation of developers’
notetaking processes using Catseye, we found developers were able
to successfully use annotations to support their code sensemaking
when completing a debugging task.

CCS CONCEPTS
• Software and its engineering → Maintaining software; Soft-
ware evolution.

KEYWORDS
Annotations, notetaking, software engineering, sensemaking, code
comprehension

ACM Reference Format:
Amber Horvath, Brad A. Myers, AndrewMacvean, and Imtiaz Rahman. 2022.
Using Annotations for Sensemaking About Code. In The 35th Annual ACM
Symposium on User Interface Software and Technology (UIST ’22), October
29-November 2, 2022, Bend, OR, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3526113.3545667

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UIST ’22, October 29-November 2, 2022, Bend, OR, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9320-1/22/10.
https://doi.org/10.1145/3526113.3545667

1 INTRODUCTION
Modern software engineering requires developers to make sense
of large amounts of unfamiliar code [51]. Whether this is in the
context of using an application programming interface (API) or
other software library in ones’ own code [40], contributing to an
open source project for the first time [52], or maintaining and de-
bugging a large project [30], all of these different situations require
a developer to locate one or more patches of code, comprehend
the code, such that they can debug or modify the code to their
own needs, then actually make those modifications [28, 30, 39].
Even if the change and the code base are relatively small, these
tasks are still cognitively demanding. The developer must maintain
their own task context [39], while also keeping track of the various
questions [50] and hypotheses [60] they have about the code, the
answers they find to these questions [32, 50], their code locations of
interest (commonly referred to as the “working set” [5, 10, 28, 63]),
the different versions of the code they try [24, 62], and how those
various versions produce differing outputs [24]. Keeping track of
all of this information becomes even more difficult considering that
programming tasks often span multiple days, and a developer may
be working on multiple programming tasks at the same time [42].
Even shorter, simpler tasks can suffer from interruptions, resulting
in the developer spending time and energy trying to regain their
original task context [15, 41, 43].

With so much information to keep track of, developers employ
a variety of techniques to try and externalize this information with
varying degrees of success. For example, a common tactic when
leaving a programming task is to use environmental cues such as
an open file to remind the developers of what they were working on
[28, 41, 43]. While these cues can reduce resumption time after an
interruption [43], they often suffer from a lack of sufficient context
to fully jog the developers’ memory. Other mechanisms for keeping
track of information include code comments and, more broadly,
notetaking.

Code comments are commonly utilized for keeping track of open
tasks [39, 58] and can be used as navigational aids [54, 58], but
are not commonly used for keeping track of the other previously-
mentioned information needs developers have such as facts learned
or open questions. This may be partially because the cost of exter-
nalizing this information, especially when the information may be
incorrect, is too high [43], and these code comments must then be
cleaned up [53]. Further, there are situations in which developers

https://doi.org/10.1145/3526113.3545667
https://doi.org/10.1145/3526113.3545667

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Amber Horvath, Brad A. Myers, Andrew Macvean, and Imtiaz Rahman

Figure 1: Catseye as it appears in Visual Studio Code shown with annotations on a sample HTML file. (1) shows how the
annotation appears in the editor – the code is highlighted with a light gray box and, when hovered over, the annotation content
appears in the informational pop-up underneath any other documentation. Clicking on the “Show Annotation” button opens
and brings into focus the Catseye pane if it is not already visible, then scrolls to the corresponding annotation in the pane.
(2) shows the annotation location(s) in the scroll bar gutter in a light green. (3) is a search bar for searching across the user’s
annotations. (4) is the Catseye pane – the pane is segmented into sections corresponding to the annotations’ locations in the
file system, save for pinned annotations which appear in their own section at the top. In this case, the “Current File” section is
open and expanded while the other sections are collapsed. (5) is an annotation – the top of the annotation shows the author and
creation time information on the left, and the buttons corresponding to what operations can be performed on the annotation
on the right. (6) shows the two code anchors for the annotation, with the top anchor in the current file, while the second anchor
is in a different JavaScript file. (7) is the content the user added as an annotation to the code snippets. (8) is a snapshot of the
code at a previous version with a comment added by the author about this version of the code. (9) is a reply to the original
annotation, further contextualizing and building upon their original thought, given what they discovered in the JavaScript file.

are reticent or not even allowed to add comments to code, since
that involves editing the source. Reasons for not editing the source
include not having proper credentials to edit the code (e.g., for an
external library or API code), not wanting all of their collaborators
to see their comments [53], and not wanting to take ownership of
the code or check into version control any changes that just involve

comments. Given these issues of editing the source, notetaking out-
side of the editor is commonly used as a way of externalizing some
of this information [41] with some developers reporting that they
use their notes not only for task-tracking, but also for comprehend-
ing code and later relaying their insights to other developers [37].
This suggests that there is a need for a more lightweight mechanism
for keeping track of code-related information that is not typically

Using Annotations for Sensemaking About Code UIST ’22, October 29-November 2, 2022, Bend, OR, USA

externalized in code comments, but would benefit from utilizing
the context of the source code.

In order to support this notetaking need more directly, we devel-
oped an annotation system, Catseye (see Figure 1). In our design,
we aim to support experienced developers who are performing
large-scale, complex code understanding activities (e.g., balanc-
ing different tasks, reading through lots of unfamiliar code, and
performing maintenance on the code base), and we designed anno-
tating features to support those needs. We chose to use annotations
since they contextualize the note to the code, without having the
note’s content be in the code base. Annotations have this advan-
tage over traditional code comments, along with other benefits:
annotations can be put on any text (while code comments can
only be put in specific places), annotations can be attached to a
range of code while code comments are localized to one specific
place, annotations use the same syntax everywhere while code
comments use different syntax in different programming languages
(with some languages such as JSON not having comments at all),
annotations can have threaded conversations while code comments
do not directly support conversations, and editing code comments
can sometimes result in parsing errors while annotations never
change the way the code behaves.

Therefore, annotations can serve as a unified interaction tech-
nique for providing contextualized, code-related information that
would not or should not be put in code comments, while providing
additional utilities that make this information more usable. Cats-
eye provides the following features to support developers when
keeping track of information:

• Ephemeral Annotations to capture developers’ questions, open
tasks, hypotheses, and other thoughts about the code, with-
out modifying the source code. We use the term “ephemeral”
as a contrast to the more permanent nature of code com-
ments.

• Permanent Annotations, since prior work has found that de-
velopers’ questions about a code base can serve as a useful
learning resource [55], Catseye provides annotations that
can be saved along with the source files, or turned into regu-
lar code comments.

• Replies where developers can follow-up on the content of
their annotations with additional insights, answers to ques-
tions, output generated by the system, or other related in-
formation.

• Multiple code anchors to support developers’ navigation of
the code through creating working sets of code patches of
interest.

• Pinned annotations so developers can cluster, prioritize and
more seamlessly navigate the code base.

• Code snapshots so developers can capture versions of their
code without needing to use more heavyweight mechanisms
such as version control systems, which developers have been
reticent to use when doing “exploratory programming” [24].

• Capturing system output, stack traces, error messages, and
other textual information useful for sensemaking, through
support for copy-pasting the output into the annotation or
associating the output with a specific version of the code.

• Search so developers can easily find their notes of interest.

To evaluate Catseye’s support for sensemaking about code, we
ran a small user study. Developers needed to keep track of infor-
mation that we expect Catseye to help with while attempting to
debug some purposefully confusing code. We investigated how
developers created and utilized annotations when comprehending
unfamiliar and complex code (experimental condition), and how
these annotations compared to traditional developer notes (control
condition). We found that developers were better able to debug
when using Catseye compared to the baseline, and revisited and
used their annotations over 2 times more often, on average, than
the control condition used their notes.
In this work, we contribute the following:

• A unified mechanism with a collection of features informed
by prior work to support developer information needs inte-
grated in our system, Catseye (Section 3).

• A study comparing Catseye with conventional notetaking
that demonstrates (Sections 4 and 5):
– Developers using annotations more often externalize their
questions, while traditional notes more often represent
open tasks and facts, suggesting annotations are successful
in eliciting more ephemeral information.

– Developers using annotations more often revisit their an-
notations in comparison to regular notes, and use their
annotations in different ways, such as for navigating their
code and for resolving their open tasks.

2 RELATEDWORK
Our research builds upon prior work that seeks to understand what
causes developer confusion and how developers externalize this
information, and systems that have tried to help. We also discuss
other annotation systems.

2.1 Code Comprehension
Prior literature has extensively studied how developers attempt to
learn unfamiliar code [11, 31, 37, 47]. A frequent theme that arises is
that understanding unfamiliar code is very cognitively demanding,
as developers are attempting to keep track of not only the objectives
of their task, but also their developing mental model of how the
code is structured [30, 50], the data flow of the program [50], their
“working set” of code patches [28], information they have learned
[32], and so on. Sillito et al. report that various developer informa-
tion tracking tasks, such as composing code patches across different
files, are difficult and have no support in traditional IDEs [50]. Our
work seeks to alleviate some of this cognitive load through directly
supporting developers’ lightweight notetaking while retaining the
context that led to the developers’ confusion through annotating,
which has been effective in other developer contexts [22].

2.2 Developers’ Commenting and Notetaking
Behaviors

Code comments have been the subject of prior work that seeks
to understand how and what information developers choose to
document through comments [20, 48, 53], whether these comments
are actually useful [4, 44, 61], and how these comments are later
used [14, 45] and cleaned up [56, 57]. An analysis of 2,000 GitHub
projects found 12 distinct categories of comments developers write

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Amber Horvath, Brad A. Myers, Andrew Macvean, and Imtiaz Rahman

and found that information designed for code authors and users
appeared less often than more formal types of documentation, sug-
gesting that developers are not frequently commenting for their
own benefit or these comments are removed prior to submitting
the code to publicly-viewable repositories [48]. Other work has
also found a need for code comment clean up, such as Storey et
al.’s work which found that developers commonly leave code com-
ments for bug tracking, but that these comments are sometimes
left unattended and can decrease code comprehension [53]. With
our system, ephemeral annotations can all be deleted together, and
never pollute the real code.

Developer notetaking is less extensively studied than code com-
menting, but research does provide evidence that developers do
take notes and can benefit from them. Prior work found that 77% of
developers use notes to keep track of their progress during program-
ming tasks and 75% of these notes are unsituated, meaning they
are not kept in the editor [41]. Other studies found that developers
take notes for their own comprehension [37, 41], for keeping track
of useful resources [34], and for keeping track of their progress on
a development task [36, 41]. They also sometimes use these notes
as a resource when sharing information with other developers [37].
However, these notes suffer from being non-contextualized, which
makes them hard to reuse and difficult to understand if they are not
used immediately [37, 43], and these notes have a tendency to get
lost [34]. We extend this notetaking work and code commenting
research through our tool that makes notetaking for developers
more beneficial and our study which reports on how developers
currently take notes and the content of these notes.

2.3 Tools to Support Developers’ Information
Tracking Needs

Tooling support for code comprehension has been an open research
challenge given that developers have their own workflows and their
own idiosyncratic practices. Some work has attempted to augment
current practices through creating more advanced commenting
mechanisms, such as TagSEA [54, 58] and other code bookmark
projects [18], where, given specific formatting of a source code com-
ment, the IDE will label that code and make it a navigational way
point. These tools fit into developers’ established work practices but
do not resolve the inherent issue of cluttering the code with unnec-
essary information. Other tools have specifically supported manag-
ing multiple code versions and their output [19, 24, 25], managing
developer online learning resources [6, 22, 34, 35], and supporting
code navigation [5, 10]. Code navigation, in particular, has been
shown to take up 35% of developers working time when performing
maintenance tasks [30]. Researchers have created tools that attempt
to make code navigation easier by understanding the user’s task
and the relevant code fragments [5, 10], and predict developers’
navigation paths to support debugging [33]. Our work attempts
to support all of these activities through a lightweight annotating
metaphor where the annotations support versions and output, can
serve as navigational aids, and can hold references to developers’
various learning resources.

Some prior tools have also focused on facilitating developers’
explorations of their implicit questions about their code in-situ. Un-
ravel allows data scientists to view summaries of each step of their

fluent R code, and re-run each step within the series of function
calls [49]. Henley et al. developed a prototype “inquisitive code
editor” system that flags code that may confuse novices and quizzes
the novices on the expected behavior of those code snippets [21].
These tools show the efficacy of some of Catseye’s design choices
through succeeding in supporting in-context question-asking and
answering, but differ from our design in that we allow the developer
to formulate and write out their own questions. Further, these tools
support specific populations of programmers who deal with specific
issues – data scientists, who need assistance in managing and under-
standing their data’s changing shape through code execution, and
novices, who are still learning basic programming concepts. Our
tool differs by supporting more experienced developers who are
performing large-scale information tracking, where the developer
would benefit from externalizing this information while leveraging
the context of the source code.

2.4 Annotation Tools
Annotation tools have been developed to help with active reading
[16], the act of taking notes while reading. Annotating has been
shown to help with sensemaking by allowing the annotator to off-
load some of their thoughts when processing complex information
or comprehending confusing materials [26, 27]. Given these ben-
efits, annotating is supported in applications designed to support
reading (e.g., Adobe Acrobat comments) and writing (e.g., Google
Doc and Microsoft Word comments). Annotation tools also exist as
internet browser plugins, such as Hypothes.is [23] and our Adamite
tool [22], they have been used successfully for learning in class-
rooms [64], and have served as integrated question-and-answer
forums for websites [9, 59].

Most relevant to our work are Codepourri [17], a system that
allows developers to annotate Python code execution steps to gen-
erate tutorials for newcomers to programming, Carter’s CodeTour
[7], a Visual Studio Code extension which allows developers to
create guided walkthroughs of their code base through annotating
and linking lines of code, and the Synectic IDE [1], which supports
linking and annotating code files. All of these systems showed suc-
cess, with developers creating annotations that are useful for others,
but did not investigate how annotations may be useful for the orig-
inal author, despite this being a core benefit of annotation systems.
Further, neither Synectic nor Codepourri were integrated into a
normal programming environment, leaving annotating impossible
during regular programming tasks.

3 OVERVIEW OF CATSEYE
3.1 Catseye
We developed Catseye– an extension for the Visual Studio Code
editor [38] – that allows developers to keep track of their tasks,
open questions and hypotheses, answers to these questions, and
more in the form of annotations attached to one or more snippets
of code (see Figure 1). We chose to adopt some of the features of our
earlier Adamite system [22] for Catseye, given Adamite’s focus on
supporting developers’ information tracking on the web through
annotations. Adamite showed the benefits of multiple anchors and
pinning, and we expected that these features would help with code
comprehension issues, such as managing a working set. We also

Using Annotations for Sensemaking About Code UIST ’22, October 29-November 2, 2022, Bend, OR, USA

introduced novel annotation features for Catseye, such as code
snapshots for micro-versioning, to help with other information
tracking needs.

To create an annotation, a developer selects a snippet of code
in the editor and, using a keyboard shortcut, the context menu, or
Visual Studio Code’s Command Palette, indicates that they want to
create an annotation. The Catseye pane will update with a preview
of the annotation, where the developer can add text and choose
whether or not to pin the annotation. Once the annotation has been
created, it will appear in the Catseye pane and the editor will update
with a light gray box around the annotated code at the anchor point
(see Figure 1 at 1). With an annotation, a developer can click on it
to jump to the anchor point in the code (and vice versa), build upon
it through adding additional code snippets as “anchors”, capture
versions of the code and the code output, “pin” the annotation for
easier navigation, “reply” to the annotation with more information,
search for the annotation, export the annotation as a code comment,
and edit and/or delete the annotation.

Given our high-level goal of creating an annotation systemwhere
annotations serve as ephemeral notes when making sense of code,
we explicitly designed annotations to function similarly to Google
Doc comments or Microsoft Word comments. Annotations in Cats-
eye move around with the code as the code and its location in the
editor change over time, and the annotations appear in their own
designated area that is detached from the developer’s editor. We
chose this design metaphor to emphasize the point that annota-
tions are not code comments – they are separate, meta-level notes
that are attached to but abstracted from the developer’s working
context. Annotation anchors update whenever the developer edits
their code, and the copy of the code at the anchor that is shown in
the annotation (Figure 2 at 2) is updated whenever the developer
saves their code (since updating the pane with a new version of
their code on every key press was too computationally expensive).

Annotation code anchors can also be used as navigational aids.
The developer can click on the code or the file path in the annotation
(Figure 1 at 6 and Figure 2 at 1) which will open that file in a new
tab if it is not already open, bring that file’s tab to the front if it was
not already, and scroll to the code’s location in the file. Additional
navigational affordances are provided for pinned annotations – a
developer can use a keyboard shortcut to cycle through each pinned
annotation’s location to help with navigating through important
code patches. Figure 2 shows a pinned annotation one participant
in the user study created to help with managing their working set.

Given the mutable nature of code, keeping annotations attached
introduced some design challenges unique to Catseye in comparison
to other annotation systems designed for more static information.
Since code is expected to change, retaining the original anchor
point becomes more important as the annotation’s content is more
likely to become out-of-date – we choose to store a copy of the
user’s original anchor point for reference as the code changes. The
developer can also explicitly save a version of the code by clicking
the snapshot button on the code anchor box (see Figure 1 at 6).
Once the snapshot has been created, the developer can edit the
snapshot to add metadata, such as what output that version of the
code produced (Figure 1 at 8).

Another design challenge is how to handle the case where the
user deletes the code that an annotation is attached to – should

Figure 2: An annotation made by a participant in our study.
(1), (2), and (3) show the 3 different code anchors the par-
ticipant created across multiple files, with the first anchor
(“gameloader.js”) as the site of their question, and the remain-
ing two anchors and reply (4) answering their question. The
annotation was pinned.

the annotation be removed as well or should it persist? Different
annotation systems do different things – Overleaf comments will
persist when the anchor is deleted, with a line showing where the
text used to be, while Google Doc comments will be removed if their
anchor is removed. We chose to follow Google Doc’s design choice,
with the rationale that, if the user wants the annotation content to
persist, they can attach an additional anchor to the annotation.

A related issue is what to do with annotations on code which
is copy-and-pasted. Again, other annotation systems do different
things. We decided to not copy the annotation with the code with
the justification that we want to reduce as much potential annota-
tion clutter as possible (thus we choose to never create an annota-
tion without the user’s explicit request). These design choices also
turned out to be the most useful way for these features to work in
the first author’s personal usage of the tool (see Section 7). We plan
to explore these choices further in future work.

Oftentimes, when a developer wants to keep track of some in-
formation, they will want to resolve or build upon the information
they initially felt was worth jotting down. Catseye follows a similar
model to other annotation systems where “following up” on the
content of a note is kept very general, so the developer can either
edit their original note, or reply to it with their additional thoughts.

Although this paper focuses more on ephemeral annotation use,
we also expect that some of the information that developers choose
to annotate may be worth keeping around. A single command
will convert an annotation to be a regular code comment, so the
information can be easily persisted in the code base, if desired.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Amber Horvath, Brad A. Myers, Andrew Macvean, and Imtiaz Rahman

Annotations can also be exported to a JSON file so that they may
be tracked in version control.

3.2 Background and Design Goals
In creating Catseye for Visual Studio Code, we were particularly
interested in helping developers capture and keep-track of their
ephemeral thoughts, questions, concerns, and open action items
related to their code, since this is the least well addressed aspect
of previous tools. We envision that annotating will help with the
following use cases:

• Keeping track of developers’ questions and hypotheses
about code. Sillito et al. [50] found that, during software
maintenance tasks, developers reported over 40 different
kinds of questions they had about the code and that there is
little tooling support for finding answers to those questions.
They also found that there is limited tooling support for
helping developers keep track of these questions as they
come to an answer. Given that Catseye’s annotations retain
the original context of the code, and allow for composition
of multiple code snippets through multiple-anchoring, we
hypothesize that annotations may help with keeping track of
these complex questions and the eventual answer a developer
finds.

• Keeping track of facts developers learn about code.
During any task that requires comprehending code, devel-
opers will naturally collect a body of knowledge about the
code base [32]. Only some of these facts are appropriate as
documentation, either because the behavior of the code is
expected to change (such as during debugging) or because
there is uncertainty about the veracity of the fact. We hy-
pothesize that Catseye and its annotations will help with
externalizing these thoughts while not requiring laborious
clean up, since the source code is unaffected.

• Keeping track of developers’ open to-do items. In try-
ing to complete a complex programming task, a developer
needs to keep track of a multitude of both high level goals
and lower-level implementation steps in order to achieve
that goal which the developer may forget, especially when
interrupted [41]. Developers can use annotations to mark
the code to change with the details of their “todo” item, com-
pose snippets that are related to the change using multiple
anchors, and can pin and un-pin the annotation as a way of
marking whether or not the task still needs to be addressed.

• Helping developers navigate their code. An oft reported
difficulty in programming is navigating the code base, es-
pecially when it is large. Developers typically discover a
“working set” of task-relevant code fragments [5, 10, 28],
then spend time navigating among these fragments as they
implement their change. This navigation takes up a large
amount of time, especially since these fragments can be dif-
ficult to return to [28]. We expect that clustering annotation
anchors using multiple anchors, pinning these annotations
for easier tracking, and using the code anchors as quick links
will make this navigation easier.

• Keeping track of localized changes. When a developer
is implementing a change, they often try multiple versions

of the code in order to investigate the differences in out-
put and ensure that the change works. These changes can
be relatively small (i.e., less than 5 lines of code), may not
be tracked in version control [24], and switching between
these versions can be difficult if the prior versions are not
retained, especially since they may be inaccessible through
undo commands [62]. Catseye allows developers to snap-
shot their code for versioning, such that developers can keep
track of the different changes they try and can optionally
associate these versions with the output they produced.

• Keeping track of changing system output.While testing
changes, developers have reported a need for keeping track
of what version of their code produced what output [24] and
have used strategies such as copy-pasting the output into text
files. We provide annotations as a place to store these outputs
– developers can either reply to their annotation with the
output values or edit their snapshots with the output which
comes from that version of the code, thereby leveraging the
context of the code.

Notably, the use cases described above are designed for the ben-
efit of the original author of the annotation. We chose to focus on
supporting the initial annotation author given the goal of support-
ing a developer’s tracking of information, which is largely localized
to a single author and their implementation session(s). However,
we expect that annotations will be beneficial for other purposes,
which we discuss in Section 9.

3.3 Implementation Notes
Catseye is a Visual Studio Code extension which utilizes TypeScript
and the Visual Studio Code API for the core logic of the extension,
React 17.02 [13] for the user interface, and Google Firestore [12]
for storing user profile and annotation data.

When Visual Studio Code is launched, Catseye authenticates the
user using both Visual Studio Code and Firestore. The Visual Studio
Code API’s authentication service authenticates using the user’s
GitHub account and the GitHub OAuth data is sent to Firestore in
order to connect to our database. Once the user has been authen-
ticated, all of their annotations which have not been deleted are
pulled into the system. 1 If the user is not authenticated or does not
have a GitHub account, they can still use Catseye, but, instead of
having their annotations stored on the database, their annotations
will be stored locally in a JSON file that the system produces.

Annotation anchors are kept up-to-date using Visual Studio
Code’s document change event handler. Whenever the user modi-
fies a file that contains an annotation, the Visual Studio Code API
generates a change event object that we interpret. For simple cases,
such as adding a new line at the top of the file, updating the an-
chors is trivial, but, in the case of more complex changes, such
as pulling in a new version of code from GitHub (which the Vi-
sual Studio Code API treats as many small edits applied in rapid
succession), using the event API can fail, resulting in an incorrect
anchor point. If this occurs, we delete the annotation. Given that
tracking source locations has been a long-standing challenge in
software engineering [46], we leave more robust methods for fixing
up broken anchors to future work, along with investigating the
1Deleted annotations are kept on the server for recovery and research purposes.

Using Annotations for Sensemaking About Code UIST ’22, October 29-November 2, 2022, Bend, OR, USA

design space of how annotations should be updated or archived
given these large changes.

4 LAB STUDY
In order to understand how developers keep track of information
while making sense of code when using their own strategies and
when using annotations, we ran a small lab study. Participants
in the experimental condition authored annotations while using
Catseye to help them keep track of information, while participants
in the control condition used whatever strategies they normally
would employ. The lab study consisted of a training task, then a
debugging task, and ended with a survey to assess the participants
backgrounds, their experience with Catseye if in the experimental
condition, and their experience completing the task.We chose to use
a between-subjects design as opposed to a within-subjects design
due to the nature of the task. The study took around 90 minutes, so
adding another training session and 45 minute task would make
the study too long. Further, as discussed in [29], since these are
problem-solving tasks that you can only do once, creating 2 tasks
which are independent but of equal difficulty is challenging. All
study materials are available in the Supplemental Materials and
the study was approved by our institution’s Institutional Review
Board.

4.1 Method
4.1.1 Training Task. Both conditions included a training task us-
ing a repository of website templates2 to either familiarize the
participants with Catseye (experimental condition) or to showcase
how the participants currently keep track of information when
programming (control condition). Participants in the Catseye condi-
tion learned how to create and edit an annotation, pin and reply to
an annotation, navigate and version their code using annotations,
and collect system output, with all functionalities contextualized
to how they may be useful for keeping track of different kinds of
information. Participants in the control condition were asked to
describe how they currently keep track of the different types of
information we expect Catseye to support. In this way, we tried
to make sure that both groups were primed about the kinds of
activities that Catseye is designed to support.

4.1.2 Main Task. For the main task, participants were instructed
to understand and attempt to debug a website. Participants were
told to imagine that they were a new developer on a team and
that they were tasked with understanding and debugging some
code. For the first 15 minutes, the participants were not allowed to
edit the pre-existing code (but they could add comments and print
statements) as part of the scenario in which they are new to a team
and should spend time familiarizing themselves with the code prior
to contributing changes. This also allowed us to see investigate
differences in the kinds of annotations made while understanding
versus debugging and editing. After the 15 minutes of understand-
ing and testing the code, participants had 30 minutes to attempt
to use what they learned to resolve issues they had discovered.
During the full 45 minutes, participants were encouraged but not
required to keep track of information in the way they naturally

2https://github.com/ShauryaBhandari/Website-Templates

would (control) or to use Catseye (experimental). By making use of
the tool (experimental) or other resources (both) entirely optional,
we aimed to make the task more realistic and see what participants
wanted to use.

Thewebsite included buggy implementations of Snake and Tetris.
Each game had 4 bugs, with an additional bug that affected both
games, totalling 9 bugs (see Table 1). We chose these two games
since they are both relatively well-known, are event-based which
makes understanding their structure less straightforward, and have
clear requirements such that testing the games takes less time in
comparison to actually debugging their logic. Similar tasks have
been used in related studies [41, 43].

The code was specifically designed to be confusing in order to
make keeping track of information particularly important (see Table
2). Given prior literature around what makes code confusing [50],
we purposefully included bad code smells such as poorly-named
variables, global variables, lack of organization amongst methods,
and no documentation. Since participants only had 45 minutes for
the task, we wanted to necessitate keeping track of information
while also keeping the task semi-realistic through using known
issues when comprehending unfamiliar code. To further validate
the realism of the code, we included two questions in our post-
task survey that asked participants how similar the code they saw
in the study is to code they have encountered during their time
as developers and how frequently they have encountered such
code. Participants reported the code is similar to code they have
encountered before 3 but that they do not encounter code like this
very frequently 4.

4.2 Participants
We recruited 13 participants (5 women and 8 men) using study
recruitment channels at our institution, and advertisements about
the study on Twitter, Facebook, and LinkedIn. Participants were
randomly assigned between the control and experimental condi-
tions, with 7 participants in the experimental condition and 6 in
the control condition – participants in the experimental condition
are referred to as “P1” through ”P7” and control participants “C1”
through “C6”.

All of the participants were required to have some amount of
experience using JavaScript, to have a GitHub account, and to regu-
larly use Visual Studio Code. The participants’ professions included
graduate students in computer science-related fields, undergradu-
ate students in computer science, and professional programmers.
On average, participants had 10.2 years of programming experience,
5.2 years of professional programming experience, and rated their
familiarity with JavaScript at 4.5 out of 7. Participants in the control
condition had more experience and more professional experience,
on average, than experimental participants, but not significantly
more.

All study sessions were completed remotely using video confer-
encing software. Each participant was given access to the GitHub
repository with the code used for the main task. Participants were

3average = 3.4 out of 5, using a 1-to-5-point Likert scale from very dissimilar to very
similar
4average = 2.6 out of 5, using a 1-to-5-point Likert scale from never to very frequently

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Amber Horvath, Brad A. Myers, Andrew Macvean, and Imtiaz Rahman

Game Bug Minimal Solution

Both Unable to Play Games Independently Change one of the event listeners to a different key (1 value change)
Snake Screen Does Not Refresh Adapt Tetris’s screen clearing function to Snake (10 line change)
Snake Snake is Too Fast Adapt Tetris’s timing function to Snake (10 line change)
Snake Snake is Drawn Incorrectly Change the constant value for the snake segment length (1 value change)
Snake Food Collision Check is Incorrect Change the ORs in the boolean to ANDs (2 value change)
Tetris Blocks Falls in Last Key Press Direction Set current direction of block fall to “down” on each game loop (3 value

change)
Tetris Rotating Square Causes Square to Move

Upwards
Add conditional to prevent square from being rotated (3 line change)

Tetris Game Does Not End Change conditional to whether the stack of blocks is at the top of the
screen (1 value change)

Tetris Game Calculates Score Incorrectly Increment user’s number of cleared rows instead of setting to last clear
row value (1 value change)

Table 1: The bugs present in the two games. “Value” refers to a construct in the program, such as an operator, boolean, or
variable.

compensated $25 for their time, save for 1 participant who elected
not to be compensated.

4.3 Analysis
Across both conditions, we objectively coded what bugs the partici-
pant succeeded in fixing (see Table 1). In the experimental condition,
we analyzed the video recordings and log data to count how many
annotations each participant authored and how often they inter-
acted with their annotations (including creating replies, additional
anchors, and snapshots, pinning an annotation, reading an annota-
tion, editing or deleting an annotation, and navigating using the
anchor(s)) to assess the utility of the annotations for keeping track
of information. We additionally logged whether or not any annota-
tions were made in the first 15 minutes and, for annotations created
during the debugging part of the task, what bug the participant
was attempting to solve at the time of creation. We analyzed the
videos in the control condition to log the same types of interactions
including the artifacts developers made in that condition, such as
code comments and external notes.

We additionally labeled the annotations and control condition
notes with the type of information it was being used to help keep
track of. We objectively coded this conservatively based off the
content. If an annotation’s or artifact’s content was phrased as a
question or had a question mark, it was coded as a question; if the
content had words such as “might” or “seems like”, it was coded
as a hypothesis; if the content was phrased as an objective such as
“change this”, it was coded as a task; and if the content was stated
as a fact (e.g., ”game-1.js is snake”) it was coded as a fact (even if
the fact was incorrect). The same process was used for annotation
replies. We counted items as used for “versioning” when they either
contained a snapshot (annotation) or were used to mark a change
they made to the code base (annotation or control artifact). For
navigation, we counted an annotation that is pinned and/or had

multiple anchors as used for navigation. 5 We counted an annotation
or control artifact as being used for output if the participant used
it to store or comment upon the game output. If the content of an
annotation or artifact did not fit into any of these categories, it was
marked as “Other”. For replies, we also labeled whether or not a
reply served as an answer to their question annotation – a reply
was considered an “answer” if its content was a direct response to
the question’s content that supported or refuted it.

5 RESULTS
Participants in the experimental condition fixed, on average, 1.85
bugs (min = 0, max = 4), while participants in the control condi-
tion fixed 0.67 bugs (min = 0, max = 1), a significant difference
(two-tailed T-test, p = .04). To further explore these results, we inves-
tigate what types of information participants chose to keep track
of through annotations versus what information control partici-
pants used their artifacts to keep track of, how participants used
their information when completing the debugging tasks, and how
participants performed on the debugging task.

5.1 What Information Do Developers Keep
Track of with Annotations and Artifacts?

Experimental condition participants created 84 annotations, with
each of these participants creating, on average, 12 annotations (min
= 6, max = 21, median = 10, std. dev. = 5.446). 44 of the annotations
were made in the first 15 minutes and 40 were made in the last 30
minutes. The size of the annotations averaged 12.2 words (min = 1,
max = 45, median = 12.5) and they were attached to code averaging
29.3 characters. Each anchor was, on average, 1.59 lines long, with

5Since multiple anchors and pinning are unrelated to the text content of an annotation,
this means an annotation could be marked as both “navigation” and, for example,
“fact”.

Using Annotations for Sensemaking About Code UIST ’22, October 29-November 2, 2022, Bend, OR, USA

What Information to Track What Aspect of the Task Explanation

Questions, Hypotheses, and
Answers

Debugging task Debugging naturally leads to many questions and hypotheses
about the program behavior but subsequent answers may be lost
or forgotten [50]

Facts Poorly-written and documented
code

Developers are tasked with learning what the code constructs are
and how they are used

Open Tasks 15-30 time split Allow developers to discover many bugs, then have them decide
which ones to focus on and how to fix them

Navigation Poorly-organized code Constructs, including methods and classes, are spread across
multiple files including some files the participant cannot edit

Localized Changes and Output Arcade Games By having two arcade games, participants are tasked with making
changes and seeing how that affects each game and how that
affects each game’s output

Table 2: How the study task encapsulates the types of information Catseye supports.

the majority of annotations attached to one line or less of code
(71/84).

Across those 84 annotations, developers had a variety of types
of information they chose to keep track of through annotations
(see Figure 3). The most common usage for an annotation was to
keep track of open questions developers had with 28 out of the 84
annotations being questions (33.3%). 16 of these questions were
made during the first 15 minutes, while the remaining 12 were
created in the last 30 minutes. 6 out of those 28 questions were
definitively answered, while 2 had follow-up hypotheses given
program output behavior, and 1 had a follow-up question associated
with the original question, resulting in 9 out of the 28 questions
being followed-up on in someway. Given the complexity of the task,
the amount of answered questions is not particularly surprising,
but the fact that participants followed-up on their questions at all
provides support for the argument that annotations can serve as
dedicated spaces for these questions. In contrast, as discussed below,
only 1 of the control condition’s 17 questions were followed-up on
or answered.

The second most common type of information experimental
condition participants kept track of in their annotations were facts
they discovered about the code, with facts comprising 27 out of the
84 annotations (32.3%). 23 of these 27 facts clarified information that
was explicitly designed to be confusing. For example, P1 annotated
const c = document.getElementById(’t’) with “this is the
canvas of the tetris game”. 18 of these 27 annotations were made in
the first 15 minutes, when participants were reading through and
understanding the code.

Experimental condition participants also utilized annotations to
keep track of their open tasks (21.4% of their annotations) and to
navigate the code (17.9% of their annotations). These annotations
typically served as reminders to the participant about places in the
code base they suspected were related to the bugs they identified
in the code. Two participants chose not to make any annotations
related to their open tasks. Task annotations were followed-up on
with replies twice, with one participant adding a reply hypothe-
sizing about why the change she attempted did not work, while

another participant added some pseudo-code to her annotation
about how she planned to implement her change. The majority of
task annotations were made during the 30 minute debugging phase
(12/18) suggesting that there was more of a need for keeping track
of their areas of interest in the code once they were developing, as
opposed to when they were trying to understand the logic.

Experimental condition participants did not use their annota-
tions for keeping track of their code versions, with no participants
using the snapshot feature. Participants did create annotations to
comment on parts of the code they added or modified, with 6 an-
notations made on the participant’s own code that they added.
Considering that participants, in general, did not edit the code very
much, since the bugs did not require large modifications to fix,
there may have been less of a need to keep track of small local-
ized changes. Further, the code that participants chose to annotate
was usually code that the participants did not edit, with only 12 of
the annotations’ corresponding code being edited. 3 annotations
were used to keep track of output – the small number of output
annotations may also be due to the minimal amounts of changes
participants made to the code. Further, since the program was a
computer game, much of the output changes were graphical which
is not output that Catseye can capture currently.

Two annotations were made that did not fit into any of the other
categories – one annotation was a message to future readers of the
code stating that they are better off rewriting the whole project,
while the other was a link to Mozilla documentation. These anno-
tations show other usages for annotations, such as communicating
with collaborators and keeping track of useful references that are
related to the code.

In the control condition, the participants created a total of 100
different artifacts, averaging 16.67 artifacts per participant (min =
2, max = 27, median = 15, std. dev. = 9.771) – which is slightly more
artifacts per participant than in the experimental condition, but the
difference is not statistically significant (p = .76, T-test). This may
partially be due to the fact that control participants were primed to
think about and show how they keep track of information. Further,

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Amber Horvath, Brad A. Myers, Andrew Macvean, and Imtiaz Rahman

Figure 3: The average number of annotations and artifacts participants created during the study.

all of the control participants had some notetaking strategy that
they described using in their daily work.

Their artifacts included 78 code comments, 14 external notes
(with 5 of the notes being created on a tablet computer, 1 being cre-
ated in a Notepad document, and the remaining 8 created using pen
and paper), and 8 Git commit message6. The artifacts averaged 5.95
words (min = 1, max = 22) – notably shorter than the annotations,
which averaged 12.2 words per annotation.

The information that control participants chose to keep track of
through artifacts differs from the information that was annotated
(see Figure 3). While, in both conditions, facts, questions, and open
tasks were the three most commonly kept track of information
types, participants in the control condition kept track of facts the
most, while participants in the experimental condition kept track
of questions most often. Only one control participant actively at-
tempted to keep track of different versions of their code, and none
of the control participants kept track of the output of their code
or used any specific mechanisms to help navigate their code, aside
from traditional code search (which participants in the experimen-
tal condition also used). These results suggest that annotations can
promote more entering of questions and answers in comparison to
traditional notes and annotations can keep track of other types of
information that may otherwise not be captured.

Another subtle difference between the control participants’ arti-
facts and the annotations created by the experimental participants
is the prevalence of task artifacts (see Figure 3). Control participants
created nearly double the amount of task artifacts, on average, and
61% of these task artifacts were code comments that included the
text “TODO”. In contrast, only 22.2% of task annotations included

6All of the Git commit messages were created by one participant.

the text “TODO”. Some of the control artifacts also included non-
code related tasks, such as asking their “teammates” about certain
design decisions, which the experimental condition participants
did not create. These “TODO” code comments are similar to the
ones described in [53] and may be better supported by Catseye
through supporting tagging tasks for better filtering and alerting
collaborators if an annotation is made that requires their attention.

5.2 How Do Developers Use Their Annotations
and Artifacts?

We quantify usage of annotations or artifacts by counting whenever
a user interacted with their annotation or artifact in some way. On
average, experimental participants revisited 5.71 unique annota-
tions, and revisited their annotations 11.14 times over the course of
the study. In contrast, the control condition, on average, revisited
3.5 artifacts a total of 4.67 times suggesting that the annotations
were more successful in encouraging participants to follow-up on
their information. One of the two most successful participants, both
of whom fixed 4 bugs, also created the most annotations (21) and
revisited his annotations the most, revisiting 14 of them 32 times,
suggesting annotation usage may have contributed to his success.

Fact and question annotations were followed up on during the
course of the main task, with facts being revisited, on average 2.5
times throughout the task and questions revisited 1.9 times, as
participants reminded themselves of important details about the
game implementations and found answers to their questions. In
contrast, the control participants only revisited their fact artifacts,
on average, 0.24 times per session, and their questions, 0.2 times.

Experimental participants often revisited their annotations to
add replies to their annotations, with participants creating 16 replies
and 5 out of 7 participants creating at least 1 reply. Replies typically

Using Annotations for Sensemaking About Code UIST ’22, October 29-November 2, 2022, Bend, OR, USA

served as an extension of the annotation’s original content, with
some annotations serving as answers to the original question (6),
hypotheses about the behavior of the code (3), and follow-up tasks
that they wanted to complete related to the original annotation
(3). For example, P5 made an annotation about Snake where the
initial annotation just said “Game 1: Snake” and created two replies,
with the first reply explaining what the two Snake-related files did,
and the second reply listing all of the bugs she had encountered
with Snake – she then revisited this annotation 3 times over the
course of the study to keep track of her bugs. Replies also sometimes
functioned as places to discuss the behavior of the code after the
participant attempted to fix a bug associated with the annotated
code, with 2 replies commenting on whether their implementation
worked or not.

Participants also used pinning, multiple anchors, and anchor
clicking as a way of supporting their navigation while working on
the task. 5 annotations had multiple anchors, 3 annotations were
pinned, and the participants used the anchors to navigate the code
base 19 times. In contrast, the control condition did not use any of
their artifacts to help them navigate the code base.

Three experimental participants also chose to delete their anno-
tations once they were “done” with them, with these participants
deleting a total of 14 annotations. The most successful participant
deleted 12 of his 21 annotations over the course of the study – when-
ever he fixed a bug he would find each annotation that related to
that bug and delete it, while keeping open the annotations that were
still unresolved. His usage of Catseye suggests that annotations can
function similarly to comments in systems like Google Docs where,
even if the content of the comment is not necessarily a “to-do item”,
the comments can still be resolved in a similar manner. Control
participants only deleted their artifacts, on average, 0.8 times while
experimental participants averaged 2.16 deletions, further suggest-
ing that a Google Docs-style design encourages more clean-up than
regular code comments or external notes.

Three control participants used their code comments as tem-
plates by copy-pasting the comment. These 3 participants copy-
pasted 4 code comments and subsequently edited 3 of the 4 pasted
comments in order to make a new comment. All of these code
comments were “fact” comments that served to document some
confusing behavior. This supports the idea that Catseye should al-
low for copy-pasting some annotations when copy-pasting the code
the annotation is attached to, such as annotations documenting
code behavior, which is discussed more in Section 7.

The control condition averaged 2.33 edits per participant while
the experimental participants averaged only .28 edits. Control par-
ticipants sometimes edited one “main” artifact they created to keep
track of bugs they found (6 out of 14 edits across 3 artifacts) and
these edits on a “main” note only occurred on external notes. They
also edited their notes to add to or clarify their initial facts or ques-
tions about the code behavior (5 out of 14 edits across 5 artifacts).
These usages are similar to how experimental participants typically
used the reply feature with their annotations in order to follow-up
on the content, while not editing their annotations.

5.3 How Did Participants Identify and Fix Their
Bugs?

All bugs were identified by at least 1 experimental participant and
had at least 1 annotation created about it, save for the Tetris square
rotation bug. No participants in the control condition identified the
Tetris rotating square bug or the Tetris score calculation bug, so no
control participants made artifacts about those bugs.

When struggling with difficult bugs, participants seemed to cre-
ate more annotations and artifacts. For example, the “Snake is Too
Fast” bug, which required 10 lines of code to change, was only suc-
cessfully completed by 3 out of the 7 participants who attempted
it, and resulted in the majority of control condition artifacts to be
about this bug, along with some annotations (see Table 3). Con-
versely, some of the simpler bugs to fix, such as “Snake is Drawn
Incorrectly” had fewer annotations made about them as there was
less need for participants to externalize their thought processes.

Some particularly complex bugs led participants in the control
condition to utilize their notes in different ways than their exper-
imental counterparts did. 3 control participants made a total of 3
external notes that were either visual diagrams of how they thought
the games should function or were algorithmic step-by-step instruc-
tions for how to design their bug fix. Since the experimental condi-
tion created no similar notes, this suggests that future versions of
Catseye may better support users by including a way to attach and
create visual diagrams, screenshots, or drawings to annotations
and support richer interactions for checking off completed steps in
an algorithm.

Participants in the experimental condition occasionally made
annotations that documented how they fixed a bug, with 4 anno-
tations created for this purpose. For example, P6 wrote some code
to try and fix the Snake Screen Does Not Refresh bug and anno-
tated their code with the text “Attempt at clearing the score” and
edited their implementation 3 times to try and achieve the correct
behavior. P6 then made 2 more annotations on other code snippets
that they were referencing when trying to fix their implementation,
hypothesizing about how they could adapt the functionality of that
code to solve their bug. Their usage suggests annotations can help
with marking and documenting code while debugging, including
code the user has added that attempts to fix the bug.

6 DISCUSSION
Our experiments lend support to the concept that annotations may
be used as a lightweight way of capturing and following-up on
information that may not otherwise be kept track of. Participants
succeeded in creating questions, following up on those insights,
and revisiting these notes in order to fix their bugs and had more
success, on average, than the control condition.

Participants reacted favorably to Catseye while also envisioning
improvements. In the post-task survey, participants commented
on how they found the commenting system intuitive, enjoyed the
anchoring system as a way of connecting parts of the code, liked
following up on annotations through replies, and stated that they
would find the system useful for their daily work7. Participants
also commented on a desire to collaborate with their teammates
7“I would consider Catseye useful for my daily work”, average score 6.16 out of 7, with
7 being “Strongly Agree”

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Amber Horvath, Brad A. Myers, Andrew Macvean, and Imtiaz Rahman

Bug # of
Experimental
Participants Who
Fixed This Bug

of Control
Participants Who
Fixed This Bug

% of Debugging
Annotations
Made About Bug

% of Debugging
Control Artifacts
Made About Bug

Unable to Play Games Independently 2 2 12.5% 0%

Snake Screen Does Not Refresh 3 0 12.5% 0%
Snake is Too Fast 2 2 15% 88.6%
Snake is Drawn Incorrectly 1 0 2.5% 0%
Snake Food Collision Check is Incorrect 1 0 7.5% 5.7%
Tetris Blocks Falls in Last Key Press
Direction

1 1 35% 5.7%

Tetris Rotating Square Causes Square to
Move Upwards

0 0 0% 0%

Tetris Game Does Not End 1 0 12.5% 0%
Tetris Game Calculates Score Incorrectly 0 0 2.5% 0 %

Table 3: The annotations and artifacts participants created during the study while working on each bug. The experimental
condition made 40 annotations while working on bugs, while the control condition created 35 artifacts. The last 2 columns refer
to the proportion of annotations made about that bug out of the 40 annotations made while debugging, and the proportion of
control condition artifacts made about that bug out of the 35 artifacts made while debugging, respectively.

using Catseye, they wanted a high-level overview of their anno-
tating behavior and the annotations they have authored, and they
requested a way to make higher-level comments on whole files or
their general task. Since running the study, we have implemented
file-level annotations. Future work should explore how to create
high-level summaries of developers’ activities using their annota-
tions to further support task tracking, and how to support collabo-
ration through improved GitHub integration.

Four participants asked to continue using Catseye after the study,
with 2 participants creating more annotations in their own code
after their session. One of these 2 participants reported back on her
usage of the tool in her daily work. She found the tool useful for
externalizing her “design-oriented notes-to-self” such as “maybe I
should do X instead, if I do decide to do that, this is the code that
needs to be edited to make it happen”. Notably, this is the type of
information she says she would normally write down on a piece of
paper and not use code comments for since she does not want to
create clutter that will only confuse her or her collaborators later.
She found Catseye valuable for acting as a space for capturing this
“thought history” that leverages the context of the code. Her experi-
ence lends further support to our claim that supporting thinking
through and keeping track of developers’ thoughts in a dedicated
space when programming is useful.

Some participants in the Catseye condition thought that the out-
put and version capturing features would be particularly useful,
despite not using them in the study. Two experimental condition
participants reported in the post-task survey that they would use
the snapshot feature in their own programming, since they found
it difficult to go back to GitHub to see other versions of their code
and they sometimes created many small changes that were not

tracked in version control. A third experimental participant noted
that they wanted to use this feature to capture output when they
are performing maintenance tasks like refactoring and need to keep
track of many “moving parts” and how their changes affect the be-
havior of their code. Since running the study, we enhanced Catseye
to automatically capture intermittent output through connecting
into the Visual Studio Code debugging API to capture and store
run time data as replies when an annotated line of code is ran. We
further plan to allow captured output to not only be text data, but
also rich media such as screenshots or videos, which would help
for debugging systems like the one used in our study, where the
primary output is visual.

Participants found the annotating metaphor familiar and under-
standable, despite the amount of complex activities participants
could use the annotations to support, with participants in the post-
task survey saying the system was very easy to learn how to use8.
Prior work has noted that annotations’ flexible nature and struc-
ture allows them to be used in a variety of ways [2, 3] – we build
upon this by showing that annotations can be used in new ways,
including to store output, to store and capture versions of code, and
as navigational aids. Typically, attempts to support these different
activities are siloed into different research tools; annotation systems
show a promising alternative where, by utilizing annotations’ flexi-
ble nature, they can act as a more general “workspace” for storing
and thinking about contextualized information a developer cares
about.

Another way that participants used annotations as a general
“workspace” for thinking was through using their annotation as a
8“I consider it easy for me to learn how to use Catseye”, average score 6.83 out of 7,
with 7 being “Strongly Agree”

Using Annotations for Sensemaking About Code UIST ’22, October 29-November 2, 2022, Bend, OR, USA

“placeholder” when navigating their code. For example, P3 created a
question annotation asking why a certain method gets called twice.
They followed-up with a hypothesis stating “seems like it’s because
it calls the draw function, which has some special logic that only oc-
curs if play is true”, but, while writing this reply, they paused to con-
tinue exploring the file while reflecting on their hypothesis, before
returning to the annotation and finishing their initial thought with
a guess, “but you still want to call window.requestAnimationFrame
i guess?”, given what they had learned while exploring. Three other
participants paused while creating their annotations to explore the
files and think critically about what they were choosing to annotate,
which suggests that the choice to have the annotations in their own
dedicated pane separate from the context of the code may better
support this kind of self-reflection. Notably, these self-reflections
have been shown to improve learning outcomes [8].

Annotations with multiple anchors brought together patches of
code that were related to the developers “working set” of interest.
For example, P3 wanted to resolve the bug “Unable to Play Games
Independently” – he found the “gameloader.js” file and annotated
the file, wondering whether this is the source of the issue (see
Figure 2). Later, he found that the reason the games were both
started is because they both listen to the “Enter” key, so he edited
his annotation to reflect that, and added additional anchors pointing
to the near identical event listeners across the two game files. He
pinned the annotation to remind himself of this information, such
that, when he was ready to edit the files, he could resolve the bug
and modify the code so that the elements had to be in focus for the
key press to start the game. P4 similarly added multiple anchors
in order to bring together function calls and function definitions
across multiple files that she was confused about.

Two participants in the control condition and 2 participants in
the experimental condition created artifacts that, while phrased as
a fact, were incorrect. The control participants added comments
above functions incorrectly stating what the functions’ purposes
were. The 2 experimental participants incorrectly assumed what
a function and variable were used for, respectively. These anno-
tations, while incorrect, are only visible to the original annotator,
while the code comments could, in theory, be viewed by any col-
laborator, which could potentially misinform them. Even if the
annotations were viewable to collaborators, they would not be in
the code acting as documentation, lessening their potential to be
harmful. An incorrect annotation could be a learning opportunity
with the reply feature, where a collaborator could clarify or correct
a misinterpretation of the code.

Two control participants had problems managing their code
comments. C1 created a comment noting that a particular part
of the Snake code looked like it was used for initialization, then
discarded the commit that contained that comment. 10 minutes
later, they searched for that comment, forgetting that they had
discarded the comment. C2 marked a part of the code with the
comment “REVISIT” but then undid a series of changes in order to
revert to an older version of the code, removing that comment in the
process, and then never revisited that part of the code. Participants
in the Catseye condition did not create any code comments (2
participants started to make code comments before removing them
and manually converting them into annotations) and did not lose

any of their annotations during the study – annotations’ meta-
nature may serve as a safeguard from erroneously removing them.
However, Catseye users could, in theory, lose their annotations
by erroneously deleting the code with which the annotation is
associated. Currently, Catseye does not put annotation creation,
editing, or deletion into the Visual Studio Code undo stack, another
area where other annotation systems differ – Overleaf similarly
does not, whereas Google Doc puts comment creation in the undo
stack (but not comment editing or resolving!) – which we will
research further in the future.

7 FIRST AUTHOR USAGE OF CATSEYE
The first author used Catseye while developing Catseye as a form
of “dogfooding.” Anecdotally, we report on the annotations created
by the first author using the same methodology of labelling each
annotation by the primary type of information it was meant to
keep track of. We omit annotations made without any text content,
as they do not have enough context for labeling, and annotations
made purely for testing the application, considering they do not
represent “real” usage of the tool. All of these annotations were
created by the first author to help herself, either in the short term
(so they were ephemeral) or for when she returned to the code later.

Over 6 months, the first author created 122 “real” annotations
in the Catseye repository across 25 source files, with each anno-
tation averaging 28.95 words (min. = 2, max. = 143, std. dev. =
27.99). 31 annotations had a total of 46 replies, 8 annotations had 18
snapshots, 3 annotations had multiple anchors9, and 7 annotations
were pinned10. 70 of these 122 annotations were deleted as the first
author finished open tasks and iterated over the code, including
removing the code the annotation is anchored to which deletes the
annotation.

The content in each annotation differs slightly from the annota-
tions created in the lab study, perhaps due to the different nature of
development. The most common annotation type was “task” type
annotations, with 37 of the 122 annotations reporting some open
action item the first author needed to act on – in contrast to the
task annotations made in the study, these task annotations served
as reminders for places to change when performing maintenance
tasks like refactoring, as opposed to parts of the code that may have
a bug. The first author also created many question annotations (36
out of 122) – 12 were replied to, with 4 of these replies answer-
ing the original question, and 17 questions were deleted. These
questions typically pondered the system behavior, previous design
choices, or details of the Visual Studio Code API. The third most
common code was “Other”, with 16 annotations. All of these “other”
annotations served as a reaction to the code, with these reactions
sometimes pondering the former design rationale and sometimes
expressing frustration with implementation challenges. For exam-
ple, one annotation, anchored to a particularly confusing function
said “This is a pain”. No annotations were made like this in the lab
study, suggesting that actively implementing and writing code may

9Multiple anchors were added late in development, so the lack of multiple anchor
usage is primarily due to the short amount of time to use the feature.
10This is a conservative count, considering we used our log data and the log does not
count whenever an annotation is pinned or un-pinned, just whether the annotation
was pinned the last time it was updated in the database.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Amber Horvath, Brad A. Myers, Andrew Macvean, and Imtiaz Rahman

elicit different types of information than code understanding and
debugging tasks.

Actively using Catseye also led to changes in the tool’s design.
Initially, an annotation would be copied if the developer copied
the annotation’s code anchor point. However, given that code was
often copied to be used as a template, in active development, copy-
pasting the annotations resulted in duplicated annotations with
irrelevant content as the code changed, which the first author found
to be more distracting than helpful. This experience informed our
design decision to not copy the annotation content when the user
copy-pastes the anchor code. However, there may be situations
in which it would be better to copy the annotation with the code,
such as when the annotation serves to document behavior about
the code. Future versions of Catseye might benefit from allowing
the user to choose whether or not to have the annotation copied
with the code, or alternatively, to add a new anchor to the original
annotation.

The first author found the tool useful for externalizing and think-
ing through problems and stopped using comments in favor of
annotations. The ephemeral nature of the annotations was partic-
ularly useful in the development of Catseye since the code was
nearly constantly changing and, thus, there was a lot of uncertainty
about the design and implementation details – information that the
first author did not want to commit to the code base as comments
in case the information ended up becoming obsolete which is a
common problem with code comments [14, 44, 56, 57].

8 LIMITATIONS AND THREATS TO VALIDITY
Our study is limited by the fact that we cannot directly compare
the bugs that participants addressed between conditions, since we
chose to allow developers to fix whichever bugs they discovered
and were motivated to fix. We feel this design resulted in a more
realistic study, considering developers normally are mostly self-
governing in terms of choosing what to work on and how to balance
their tasks, which also allowed us to better assess how developers
choose to use annotations for task tracking.

Another limitation of our study is that we created the code used
in the study, as opposed to adopting an already problematic code
base. We chose to create the code base in order to ensure that it
required developers to keep track of the information we wanted
to investigate, but future work may see how Catseye helps when
working on real projects. We do have evidence that the code base,
despite being artificial, is relatively similar to code our participants
have encountered in their time as programmers, even though they
(thankfully) do not encounter this kind of code often (see Section
4.1.2).

9 FUTUREWORK
While our lab study provides some evidence that Catseye is useful
when performing debugging tasks, we want to extend our work
by seeing how Catseye is used in other contexts in the wild with a
large-scale field study.11 Given the difference in content between
what was annotated in the lab study and what was created by the
author when developing a system (see Section 7), we expect a field

11Catseye is now available for download at https://adamite.netlify.app/

study where developers are performing a variety of development
tasks will further elucidate and quantify these differences.

A core design tenant of Catseye is that the annotations should
feel ephemeral and lightweight – we want the annotations and their
corresponding code anchor points to stay up-to-date and accurate
to prevent confusion. To support this design goal, Catseye checks
and updates its internal representation of the anchor starting and
ending points (i.e., the starting and ending lines and offsets) for
each code anchor that is in the current file whenever that file is
updated. This method works well when a developer is working
on a project on their own, but does not work for capturing edits
made outside that user’s instance of Visual Studio Code. Catseye
utilizes the GitHub API so it is feasible to use this API to associate
each anchor point with a specific commit of the repository, such
that, if a new branch is pulled in or checked out, the corresponding
annotations can either be updated (in the case of a pull) or archived
(in the case of a branch checkout).

Better GitHub integration also allows us to explore how anno-
tations may help developers when collaborating. We hypothesize
that annotations may be useful in a collaborative setting for better
supporting code review and, more broadly, conversations about
code. Both of these use cases benefit from an ability to leverage the
source code for in-context communication about its content, while
not cluttering the code base with these meta-level conversations.
We leave to future work more directly supporting collaborative
software engineering and exploring the design space of how code
annotations should function when developers may have differing
versions of the same code across their machines.

10 CONCLUSION
Developers must keep track of and understand many types of in-
formation when completing any programming task. In our devel-
opment of Catseye, we sought to help developers keep track of
ephemeral information through a custom-designed annotation sys-
tem. In our evaluation of Catseye, we found evidence that it sup-
ports developers in tracking different types of information, with
participants fixing more bugs when using the tool, and annotations
differ from traditional notes in terms of the content that developers
choose to externalize and in terms of how often that content is
revisited. We showcase Catseye as an example of the types of rich
interactions which annotation systems can support for develop-
ers and how supporting developer sensemaking activities through
annotations is a research area that warrants more investigation.
We are also optimistic that similar lightweight annotations can be
useful to support a wide variety of sensemaking tasks.

ACKNOWLEDGMENTS
This research was funded in part by the NSF under grant CCF-
2007482 and by gifts from Google. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect those of the
sponsors. In addition, we would like to thank River Hendriksen,
Michael Xieyang Liu, Emma Paterson, Shannon Bonet, Matthew
Shu, our participants, and our reviewers for their thoughtful input
and feedback.

Using Annotations for Sensemaking About Code UIST ’22, October 29-November 2, 2022, Bend, OR, USA

REFERENCES
[1] Marjan Adeli, Nicholas Nelson, Souti Chattopadhyay, Hayden Coffey, Austin

Henley, and Anita Sarma. 2020. Supporting code comprehension via annotations:
Right information at the right time and place. In 2020 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 1–10.

[2] Maristella Agosti, Giorgetta Bonfiglio-Dosio, and Nicola Ferro. 2007. A historical
and contemporary study on annotations to derive key features for systems design.
International Journal on Digital Libraries 8, 1 (2007), 1–19.

[3] Michael Bernstein, Max Van Kleek, David Karger, and MC Schraefel. 2008. In-
formation scraps: How and why information eludes our personal information
management tools. ACM Transactions on Information Systems (TOIS) 26, 4 (2008),
1–46.

[4] Jürgen Börstler and Barbara Paech. 2016. The role ofmethod chains and comments
in software readability and comprehension—An experiment. IEEE Transactions
on Software Engineering 42, 9 (2016), 886–898.

[5] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola. 2010. Code Bubbles: A Working Set-Based Interface for Code Un-
derstanding and Maintenance. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’10). Asso-
ciation for Computing Machinery, New York, NY, USA, 2503–2512. https:
//doi.org/10.1145/1753326.1753706

[6] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer.
2009. Two Studies of Opportunistic Programming: Interleaving Web Foraging,
Learning, and Writing Code. In CHI ’09 (Boston, MA, USA) (CHI ’09). Association
for Computing Machinery, New York, NY, USA, 1589–1598. https://doi.org/10.
1145/1518701.1518944

[7] Jonathan Carter. 2020. CodeTour. Microsoft. Retrieved July 1, 2022 from
https://marketplace.visualstudio.com/items?itemName=vsls-contrib.codetour

[8] Michelene TH Chi, Miriam Bassok, MatthewW Lewis, Peter Reimann, and Robert
Glaser. 1989. Self-explanations: How students study and use examples in learning
to solve problems. Cognitive science 13, 2 (1989), 145–182.

[9] Parmit K. Chilana, Amy Ko, and James O. Wobbrock. 2012. LemonAid: selection-
based crowdsourced contextual help for web applications. In CHI 2012. ACM,
New York City, NY, USA, 1549–1558. https://doi.org/10.1145/2207676.2208620

[10] Michael J. Coblenz, Amy J. Ko, and Brad A. Myers. 2006. JASPER: An Eclipse
Plug-in to Facilitate Software Maintenance Tasks. In Proceedings of the 2006
OOPSLA Workshop on Eclipse Technology EXchange (Portland, Oregon, USA)
(eclipse ’06). Association for Computing Machinery, New York, NY, USA, 65–69.
https://doi.org/10.1145/1188835.1188849

[11] Robert Deline, Mary Czerwinski, and George Robertson. 2005. Easing program
comprehension by sharing navigation data. In VLHCC 2005. IEEE, New York City,
NY, USA, 241–248. https://doi.org/10.1109/VLHCC.2005.32

[12] Google Developers. 2022. Cloud Firestore: Store and sync app data at global
scale. Google LLC. Retrieved March 27, 2022 from https://firebase.google.com/
products/firestore

[13] Facebook. 2022. React - A JavaScript library for building user interfaces. https:
//reactjs.org/

[14] Beat Fluri, Michael Wursch, and Harald C Gall. 2007. Do code and comments
co-evolve? on the relation between source code and comment changes. In 14th
Working Conference on Reverse Engineering (WCRE 2007). IEEE, 70–79.

[15] James Fogarty, Amy J. Ko, Htet Htet Aung, Elspeth Golden, Karen P. Tang, and
Scott E. Hudson. 2005. Examining Task Engagement in Sensor-Based Statis-
tical Models of Human Interruptibility. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems (Portland, Oregon, USA) (CHI
’05). Association for Computing Machinery, New York, NY, USA, 331–340.
https://doi.org/10.1145/1054972.1055018

[16] Ingo Frommholz, Holger Brocks, Ulrich Thiel, Erich Neuhold, Luigi Iannone,
Giovanni Semeraro, Margherita Berardi, and Michelangelo Ceci. 2003. Document-
centered collaboration for scholars in the humanities–the COLLATE system. In
International conference on theory and practice of digital libraries. Springer, 434–
445.

[17] Mitchell Gordon and Philip J. Guo. 2015. Codepourri: Creating visual coding
tutorials using a volunteer crowd of learners. In 2015 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, New York, NY, USA,
13–21. https://doi.org/10.1109/VLHCC.2015.7357193

[18] Anja Guzzi, Lile Hattori, Michele Lanza, Martin Pinzger, and Arie van Deursen.
2011. Collective Code Bookmarks for Program Comprehension. In 2011 IEEE 19th
International Conference on Program Comprehension. 101–110. https://doi.org/10.
1109/ICPC.2011.19

[19] Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert DeLine.
2019. Managing Messes in Computational Notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3290605.3300500

[20] Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, and Andrea Knight.
2018. When not to comment: questions and tradeoffs with api documentation

for c++ projects. In Proceedings of the 40th International Conference on Software
Engineering. 643–653.

[21] Austin Henley, Julian Ball, Benjamin Klein, Aiden Rutter, and Dylan Lee. 2021.
An inquisitive code editor for addressing novice programmers’ misconceptions
of program behavior. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-SEET). IEEE,
165–170.

[22] Amber Horvath,Michael Xieyang Liu, River Hendriksen, Connor Shannon, Emma
Paterson, Kazi Jawad, AndrewMacvean, and Brad A. Myers. 2022. Understanding
How Programmers Can Use Annotations on Documentation. In Proceedings of
the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans,
LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3491102.3502095

[23] Hypothes.is. 2012. Hypothes.is: Annotate the web, with anyone, anywhere. Hy-
pothes.is. Retrieved March 30, 2022 from https://web.hypothes.is/

[24] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (Denver, Colorado, USA)
(CHI ’17). Association for Computing Machinery, New York, NY, USA, 1265–1276.
https://doi.org/10.1145/3025453.3025626

[25] Mary Beth Kery, Bonnie E. John, Patrick O’Flaherty, Amber Horvath, and Brad A.
Myers. 2019. Towards Effective Foraging by Data Scientists to Find Past Analysis
Choices. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300322

[26] David Kirsh. 2010. Thinking with external representations. AI & society 25, 4
(2010), 441–454.

[27] Aniket Kittur, Andrew M. Peters, Abdigani Diriye, Trupti Telang, and Michael R.
Bove. 2013. Costs and benefits of structured information foraging. In CHI 2013.
ACM, New York, NY, USA, 2989–2998.

[28] Amy J. Ko, Htet Aung, and Brad A. Myers. 2005. Eliciting Design Requirements
for Maintenance-Oriented IDEs: A Detailed Study of Corrective and Perfective
Maintenance Tasks. In Proceedings of the 27th International Conference on Software
Engineering (St. Louis, MO, USA) (ICSE ’05). Association for Computing Machin-
ery, New York, NY, USA, 126–135. https://doi.org/10.1145/1062455.1062492

[29] Amy J Ko, Thomas D LaToza, and Margaret M Burnett. 2015. A practical guide to
controlled experiments of software engineering tools with human participants.
Empirical Software Engineering 20, 1 (2015), 110–141.

[30] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An
Exploratory Study of How Developers Seek, Relate, and Collect Relevant In-
formation during Software Maintenance Tasks. IEEE Transactions on Software
Engineering 32, 12 (2006), 971–987. https://doi.org/10.1109/TSE.2006.116

[31] Amy J. Ko and Bob Uttl. 2003. Individual differences in program comprehension
strategies in unfamiliar programming systems. In 11th Annual Workshop on
Program Comprehension. IEEE, New York, NY, USA, 175–184. https://doi.org/10.
1109/WPC.2003.1199201

[32] Thomas D. LaToza, David Garlan, James D. Herbsleb, and Brad A. Myers. 2007.
Program comprehension as fact finding. In ESEC-FSE 2007. ACM, New York, NY,
USA, 361–270.

[33] Joseph Lawrance, Christopher Bogart, Margaret Burnett, Rachel Bellamy, Kyle
Rector, and Scott D. Fleming. 2013. How Programmers Debug, Revisited: An Infor-
mation Foraging Theory Perspective. IEEE Transactions on Software Engineering
39, 2 (2013), 197–215. https://doi.org/10.1109/TSE.2010.111

[34] Michael Xieyang Liu, Jane Hsieh, Nathan Hahn, Angelina Zhou, Emily Deng,
Shaun Burley, Cynthia Taylor, Aniket Kittur, and Brad A. Myers. 2019. Unakite:
Scaffolding Developers’ Decision-Making Using the Web. In UIST 2019. ACM,
New York, NY, USA, 67–80.

[35] Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers. 2022. Crystalline: Low-
ering the Cost for Developers to Collect and Organize Information for Decision
Making. In Proceedings of the 2022 CHI Conference on Human Factors in Com-
puting Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3491102.3501968

[36] Walid Maalej and Hans-Jorg Happel. 2009. From work to word: How do software
developers describe their work?. In 2009 6th IEEE InternationalWorking Conference
on Mining Software Repositories. 121–130. https://doi.org/10.1109/MSR.2009.
5069490

[37] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. 2014. On the
Comprehension of Program Comprehension. Transactions on Software Engineer-
ing 23 (2014), 1–37. Issue 4. https://doi.org/10.1145/2622669

[38] Microsoft. 2022. Visual Studio Code. Microsoft. Retrieved March 28, 2022 from
https://code.visualstudio.com/

[39] Gail C Murphy, Mik Kersten, Martin P Robillard, and Davor Čubranić. 2005.
The emergent structure of development tasks. In European Conference on Object-
Oriented Programming. Springer, 33–48.

[40] Brad A. Myers and Jeffrey Stylos. 2016. Improving API Usability. Commun. ACM
59, 6 (2016), 62–69. https://doi.org/10.1145/2896587

https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/1518701.1518944
https://marketplace.visualstudio.com/items?itemName=vsls-contrib.codetour
https://doi.org/10.1145/2207676.2208620
https://doi.org/10.1145/1188835.1188849
https://doi.org/10.1109/VLHCC.2005.32
https://firebase.google.com/products/firestore
https://firebase.google.com/products/firestore
https://reactjs.org/
https://reactjs.org/
https://doi.org/10.1145/1054972.1055018
https://doi.org/10.1109/VLHCC.2015.7357193
https://doi.org/10.1109/ICPC.2011.19
https://doi.org/10.1109/ICPC.2011.19
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3491102.3502095
https://web.hypothes.is/
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/3290605.3300322
https://doi.org/10.1145/1062455.1062492
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1109/WPC.2003.1199201
https://doi.org/10.1109/WPC.2003.1199201
https://doi.org/10.1109/TSE.2010.111
https://doi.org/10.1145/3491102.3501968
https://doi.org/10.1109/MSR.2009.5069490
https://doi.org/10.1109/MSR.2009.5069490
https://doi.org/10.1145/2622669
https://code.visualstudio.com/
https://doi.org/10.1145/2896587

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Amber Horvath, Brad A. Myers, Andrew Macvean, and Imtiaz Rahman

[41] Chris Parnin and Robert DeLine. 2010. Evaluating Cues for Resuming Interrupted
Programming Tasks. Association for Computing Machinery, New York, NY, USA,
93–102. https://doi.org/10.1145/1753326.1753342

[42] C. Parnin and C. Gorg. 2006. Building Usage Contexts During Program Com-
prehension. In 14th IEEE International Conference on Program Comprehension
(ICPC’06). 13–22. https://doi.org/10.1109/ICPC.2006.14

[43] Chris Parnin and Spencer Rugaber. 2011. Resumption strategies for interrupted
programming tasks. Software Quality Journal 19, 1 (2011), 5–34.

[44] Aniket Potdar and Emad Shihab. 2014. An Exploratory Study on Self-Admitted
Technical Debt. In 2014 IEEE International Conference on Software Maintenance
and Evolution. 91–100. https://doi.org/10.1109/ICSME.2014.31

[45] Pooja Rani, Mathias Birrer, Sebastiano Panichella, Mohammad Ghafari, and Oscar
Nierstrasz. 2021. What do developers discuss about code comments?. In 2021 IEEE
21st International Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 153–164.

[46] Steven P. Reiss. 2008. Tracking Source Locations. In Proceedings of the 30th
International Conference on Software Engineering (Leipzig, Germany) (ICSE ’08).
Association for Computing Machinery, New York, NY, USA, 11–20. https://doi.
org/10.1145/1368088.1368091

[47] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. 2012. How do
professional developers comprehend software?. In ICSE 2012. ACM, New York,
NY, USA, 632–542. https://doi.org/10.1109/ICSE.2012.6227188

[48] Yusuke Shinyama, Yoshitaka Arahori, and Katsuhiko Gondow. 2018. Analyzing
Code Comments to Boost Program Comprehension. In 2018 25th Asia-Pacific
Software Engineering Conference (APSEC). 325–334. https://doi.org/10.1109/
APSEC.2018.00047

[49] Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Unravel: A Fluent Code Ex-
plorer for Data Wrangling. In The 34th Annual ACM Symposium on User Interface
Software and Technology. 198–207.

[50] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2008. Asking and Answering
Questions during a Programming Change Task. IEEE Transactions on Software
Engineering 34, 4 (2008), 434–451. https://doi.org/10.1109/TSE.2008.26

[51] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. 2010.
An examination of software engineering work practices. In CASCON First Decade
High Impact Papers. 174–188.

[52] Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco Aurelio Gerosa, and
David F Redmiles. 2015. A systematic literature review on the barriers faced by
newcomers to open source software projects. Information and Software Technology
59 (2015), 67–85.

[53] Margaret-Anne Storey, Jody Ryall, R. Ian Bull, Del Myers, and Janice Singer. 2008.
TODO or to bug. In 2008 ACM/IEEE 30th International Conference on Software
Engineering. 251–260. https://doi.org/10.1145/1368088.1368123

[54] Margaret-Anne Storey, Jody Ryall, Janice Singer, Del Myers, Li-Te Cheng, and
Michael Muller. 2009. How Software Developers Use Tagging to Support Re-
minding and Refinding. IEEE Transactions on Software Engineering 35, 4 (2009),
470–483. https://doi.org/10.1109/TSE.2009.15

[55] Leigh Ann Sudol-DeLyser, Mark Stehlik, and Sharon Carver. 2012. Code Com-
prehension Problems as Learning Events. In Proceedings of the 17th ACM Annual
Conference on Innovation and Technology in Computer Science Education (Haifa,
Israel) (ITiCSE ’12). Association for Computing Machinery, New York, NY, USA,
81–86. https://doi.org/10.1145/2325296.2325319

[56] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /* iComment:
Bugs or bad comments?*. In Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles. 145–158.

[57] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T Leavens. 2012. @ tcomment:
Testing javadoc comments to detect comment-code inconsistencies. In 2012 IEEE
Fifth International Conference on Software Testing, Verification and Validation.
IEEE, 260–269.

[58] Christoph Treude and Margaret-Anne Storey. 2012. Work Item Tagging: Com-
municating Concerns in Collaborative Software Development. IEEE Transactions
on Software Engineering 38, 1 (2012), 19–34. https://doi.org/10.1109/TSE.2010.91

[59] Laton Vermette, Shruti Dembla, April Y. Wang, Joanna McGrenere, and Parmit K.
Chilana. 2017. Social CheatSheet: An Interactive Community-Curated Informa-
tion Overlay for Web Applications. Proc. ACM Hum.-Comput. Interact. 1, CSCW,
Article 102 (Dec. 2017), 19 pages. https://doi.org/10.1145/3134737

[60] Anneliese von Mayrhauser and A Marie Vans. 1997. Hypothesis-driven under-
standing processes during corrective maintenance of large scale software. In 1997
Proceedings International Conference on Software Maintenance. IEEE, 12–20.

[61] Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2019. A large-
scale empirical study on code-comment inconsistencies. In 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC). IEEE, 53–64.

[62] Young Seok Yoon and Brad A. Myers. 2014. A longitudinal study of programmers’
backtracking. In 2014 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 101–108. https://doi.org/10.1109/VLHCC.2014.6883030

[63] Iyad Zayour and Timothy C Lethbridge. 2000. A cognitive and user centric based
approach for reverse engineering tool design. In Proceedings of the 2000 conference
of the Centre for Advanced Studies on Collaborative research. 16.

[64] Sacha Zyto, David Karger, Mark Ackerman, and Sanjoy Mahajan. 2012. Successful
classroom deployment of a social document annotation system. In CHI 2012. ACM,
New York, NY, USA, 1883–1892. https://doi.org/10.1145/2207676.2208326

https://doi.org/10.1145/1753326.1753342
https://doi.org/10.1109/ICPC.2006.14
https://doi.org/10.1109/ICSME.2014.31
https://doi.org/10.1145/1368088.1368091
https://doi.org/10.1145/1368088.1368091
https://doi.org/10.1109/ICSE.2012.6227188
https://doi.org/10.1109/APSEC.2018.00047
https://doi.org/10.1109/APSEC.2018.00047
https://doi.org/10.1109/TSE.2008.26
https://doi.org/10.1145/1368088.1368123
https://doi.org/10.1109/TSE.2009.15
https://doi.org/10.1145/2325296.2325319
https://doi.org/10.1109/TSE.2010.91
https://doi.org/10.1145/3134737
https://doi.org/10.1109/VLHCC.2014.6883030
https://doi.org/10.1145/2207676.2208326

	Abstract
	1 Introduction
	2 Related Work
	2.1 Code Comprehension
	2.2 Developers' Commenting and Notetaking Behaviors
	2.3 Tools to Support Developers' Information Tracking Needs
	2.4 Annotation Tools

	3 Overview of Catseye
	3.1 Catseye
	3.2 Background and Design Goals
	3.3 Implementation Notes

	4 Lab Study
	4.1 Method
	4.2 Participants
	4.3 Analysis

	5 Results
	5.1 What Information Do Developers Keep Track of with Annotations and Artifacts?
	5.2 How Do Developers Use Their Annotations and Artifacts?
	5.3 How Did Participants Identify and Fix Their Bugs?

	6 Discussion
	7 First Author Usage of Catseye
	8 Limitations and Threats to Validity
	9 Future Work
	10 Conclusion
	Acknowledgments
	References

