
Support for Long-Form Documentation Authoring
and Maintenance

Amber Horvath
Human-Computer Interaction Institute

Carnegie Mellon University
Pittsburgh, PA, USA ahorvath@cs.cmu.edu

Andrew Macvean
Google

Seattle, WA, USA

amacvean@google.com

Brad A. Myers
Human-Computer Interaction Institute

Carnegie Mellon University
Pittsburgh, PA, USA bam@cs.cmu.edu

Abstract—When creating a software project of any significant
size or complexity, developers must write about the code in
some form. While this is a common practice, tooling support
for creating, and perhaps more significantly, maintaining these
documents remains limited, despite these documents benefiting
later users of the corresponding code. In order to combat some
of these known challenges, we developed Sodalite – a context-
aware, Visual Studio Code extension for writing and maintaining
code-related documents. Sodalite represents a holistic approach
to the documentation authoring, maintaining, and using life cycle
by suggesting relevant code to attach to the document using
common code-writing templates, evaluating how up-to-date the
document is using the code in the editor, automatically attempting
to identify out-of-date information, and, based on how successful
the system is, notifying the user of how trustworthy the document
seems to be given their version of the related code. In our
preliminary evaluation of Sodalite, we found that users of the
system were able to successfully author documents about their
code and the system’s out-of-date link checking was accurate
86.5% of the time.

Index Terms—documentation, software maintenance

I. INTRODUCTION

Modern software engineering often requires developers to

write about their code, including design documents, onboard-

ing instructions for new developers, change logs, and pull

requests and issue descriptions on GitHub. It is uncommon to

create a software project of any significant size or complexity

without writing about it in some form, given that these

documents can be helpful for others [1]–[4].

Despite the benefits of these long-form documents, hereafter

referred to as “stories”, it is uniquely difficult to document [5],

[6] and communicate about code [7]. Some of the challenges

when authoring these documents include establishing a shared

context about which parts of the code are related to the writing

[7], ensuring that the code and the writing about the code are

kept in sync with one another [8], and knowing what does and

does not need to be documented [4], [5], [8]. Once a code story

has been written, challenges still remain for the author with

documents written about the code going out-of-date [4], [8],

[9], with code changes causing 39% of documentation content

issues [8].

Readers of code stories face their own challenges. Beyond

out-of-date information [8], [10], other issues include missing

information [4], [5], [8], [11], [12], and a lack of context

[13]. These compounding issues can lead to developers getting

blocked [4], [5], [14], [15], and to introducing avoidable bugs

[16], [17].

In this work, we attempt to address some of these chal-

lenges around authoring, maintaining, and using stories about

code with our system, Sodalite1. Sodalite is a Visual Studio

Code extension [18] which currently supports the JavaScript

and TypeScript [19] programming languages. To assist the

developer in authoring their code story, Sodalite leverages

the context of the IDE to help structure documentation and

discover and create links between the text in their story and

the relevant code in the IDE. The system then helps the author

maintain their code stories by automatically detecting code

links that are no longer valid and, if appropriate, attempts

to reconnect the link. For readers of the story, Sodalite uses

similar mechanisms to ensure that the links are valid and,

if not, warn the user and show what the code looked like

at the time in which the story was authored. Through this

approach, we hypothesize that Sodalite can help developers

author and maintain useful documents for themselves and

other developers working on a repository together.

Our work makes the following contributions:

• Identification of the kinds of code links that can be used

to enrich code stories.

• Our system, Sodalite, that helps developers author, main-

tain and use long-form writings about code by:

– Supporting authors in identifying relevant parts of

code through recommending related code.

– Assisting maintainers through using the context of

the editor to identify references that are out-of-date,

which is a significant reason code documentation

becomes problematic [8].

– Helping readers find important documents and to

identify what parts of the code lack trustworthiness,

along with providing them enough context about the

originally authored story to help them ascertain the

original intent of the writing.

1Sodalite is a mineral, and here stands for Stories for On-boarding as
Documentation Authoring, Leveraging IDEs for Text Enhancements.

109

2023 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

1943-6106/23/$31.00 ©2023 IEEE
DOI 10.1109/VL-HCC57772.2023.00020

II. RELATED WORK

A. Writing About Code

Prior work about writing software documentation have

ranged from understanding what information is in documen-

tation [20], [21], what the problems are with that information

[5], [8], [11], [14], [15], [22]–[27], how software documen-

tation is authored [3], [12], [28], and automating documen-

tation processes to offset authoring costs and standardize the

information present in documentation [29], [30]. Notably, the

majority of this documentation work is in the context of soft-

ware documentation for end users of a software library, e.g.,

API documentation [31]. Most relevant to our work are studies

about documentation created for other developers working on

the same code base, such as internal documentation about

the code base [4], [12], where the primary goal is to help

other developers understand and contribute to the code base.

Our work expands upon this work by contributing a system

designed specifically to help create this type of documentation,

with a focus on combating some of the known issues in

authoring and maintaining this documentation.

B. Tools for Writing About Code

To assist with some of the aforementioned challenges of

writing about code, some research projects have attempted to

make authoring information about code easier. Some projects

have focused on developing alternative, spatially organized

development environments in which the documentation and

source code can be kept together [32]–[34]. Others have

focused on specific types of documentation such as code tours

[35], notes [36], or tutorial generation [37]. Our work differs

by adopting an already-popular programming paradigm and

supporting the maintenance of the documentation.

C. Maintaining and Using Documentation

Once some software documentation is made, researchers

have studied how developers maintain those documents and

use that information. In studies of usage, researchers have

identified many problems of documentation that lead to the

documentation being less trustworthy [38], including questions

about how up-to-date the information is [8], [14], [22] and how

complete [5], [15]. A survey of developers at one company

reported that they rarely updated documentation and that

they correctly assumed that documentation content is out-of-

date [22]. One reason for this lack of maintenance is that

finding the appropriate places to update given a change can be

challenging, with developers reporting that they would value

a tool that helps identify those locations [39]. Our system

attempts to reduce some of these costs by having maintenance

be a core design consideration by automatically locating and

highlighting the out-of-date portions of the document given

which code was changed.

III. OVERVIEW AND DESIGN OF SODALITE

In order to use Sodalite, a user begins by opening the

Sodalite window in Visual Studio Code which functions like

any other pane in the editor (i.e., it can be dragged, resized,

closed, etc.). The user can then view the stories that have been

associated with the user’s currently-open GitHub repository or

choose to author a new story (see Figure 1a). When authoring

a new story, the user will be presented with a rich text editor,

hereafter referred to as the “story editor” (in contrast to the

“code editor”, which refers to the Visual Studio Code IDE),

and users can utilize code story templates (a set of common

documentation types developers can use to structure their

documentation) and code links.

A. Code Links and Suggestions

A key feature of Sodalite are code links, where the story

references the code. Links can be made using the “Sugges-

tions” pane (see Figure 1a-2), which lists code links that the

author may include in their code story. Code links come in

three varieties:

• Identifier definitions, which link to where a specific code

entity is first defined. A user can create an identifier

definition link by selecting the “plus” button in the

suggestions pane at the top right corner of the code

link box. Identifier definitions also include additional

information about the identifier, including places in which

it is referenced, and other classes or functions it refer-

ences. The first code link in Figure 1a-3 is an identifier

definition.

• Identifier references, which link to a specific instance

in which a particular identifier is used. An author can

make an identifier reference by selecting a reference that

is listed in an identifier definition’s list of referenced

locations. The third code link in Figure 1a-3 is an

identifier reference.

• Code ranges, which can be any arbitrary range of code

that the user has selected in the code editor. The second

code link in Figure 1a-3 is a code range.

We designed the code links to accommodate different levels

of granularity when discussing code. Sodalite supports code

ranges, since prior research has indicated that developers often

refer to code at the snippet level [40]. We support identifier

definitions and references, as that is the granularity often used

in API documentation.

Code links can be represented in a code story in two

different ways. If the user has no text selected in the story

editor, the code link will either insert the name of the identifier

or the code range’s content at the location of the user’s cursor.

If the user has selected some text in their code story, that text

will be linked to their code (see Figure 1a-5). Either way,

clicking on a code link within the story editor will navigate to

wherever that particular code link is located in the code editor.

Once a code link has been added to a story, it will appear in a

“Code References” list (Figure 1a-3), such that the link may

be used elsewhere in the story.

Code links can also contain additional meta-data Sodalite

was able to determine about that part of the code. This

includes, for the identifiers, where they are defined and refer-

enced in different parts of the code. Once a code link has been

included in the code story the “Suggestions” pane will include

110

(a) Authoring with Sodalite (b) Reading and Maintaining with Sodalite

Fig. 1: How Sodalite appears when authoring a story and post-authoring. For Authoring (a), (1) a story template a user can

choose, with “Overview” selected, (2) the current code link suggestions, (3) the already-included code links, (4) the title. (5)

the rich text editor, where the red text represents code links. For Reading and Maintaining (b), (1) a code story, with the yellow

showing that the content is in need of review, (2) the popup that appears when hovering over a code link that is in need of

review. (3) a code story with invalid code links (shown red).

other identifiers that were commonly edited at the same time

as that particular identifier. We identify these “co-edits” by

parsing the Git commit history for that particular identifier

and count when other identifiers appear in the same commit.

In this way, we attempt to identify parts of code that are related

but not in a way AST parsing would find.

Given these different types of code links, the “Suggestions”

pane uses different sources of information to populate its

list. Sodalite examines both what the user is doing in the

story editor and what they are doing in the code editor. The

information that Sodalite leverages from the story includes

what references are already included in the story and what the

user has most recently typed. Identifiers related to references

already in the code story will be prioritized, as will identifiers

that match some part of the most recently-typed text. The

system then complements that information with what it knows

about the user’s current location within the code, including if

the user is currently selecting an identifier, and, if so, what

identifiers are related to the selected identifier.

When a story is saved, Sodalite generates a JSON file in a

system-generated folder, which can be committed to the user’s

Git repository and used by other programmers. This JSON file

is also used by the system when determining whether code

links are out-of-date.

B. Support for Reading

Sodalite has some features designed specifically to help

readers of code stories better understand and utilize the

documentation. A core feature of Sodalite for readers of

code stories is the fact that it is situated within the context

of the code. Developers have previously stated they value

source code and code comments more than other types of

documentation [41] – we hypothesize that bringing the type

of information typically in external documentation into the

code editor will allow for “the best of both worlds” by staying

within the developer’s working context while also supporting

longer-form documentation.

Another feature of Sodalite that we expect to help users

of code stories are the bi-directional nature of the code links.

When some code has been linked in a story, the code will

be highlighted within the IDE, such that users of the code

can discover pertinent documentation that is relevant to that

code. The highlighted code brings up a hover text that shows a

preview of the code story, including the surrounding text from

the story, the part of the story that is linked to the code, and

the name and author of the story. If the surrounding story text

contains code links to other parts of the code, those links will

navigate the user to the code link’s location. If the user clicks

on the story link in the hover text, the Sodalite pane will open

and scroll to the correct part of the story.

C. Maintenance Support

Sodalite leverages being in the code editor such that it can

mark parts of stories as “valid” (in which all code links are

valid), potentially in “need of review” (in which the system

found a potential match for the code link – see Figure 1b-2)

111

or definitely “invalid” based on how well the system is able

to match the code references in the story to the code currently

in the user’s project in Visual Studio Code2.

On launch, Sodalite parses every code story file in the user’s

current project and builds an internal AST representation of

the code in the project to compare the code links against. We

use the different types of code links to inform how to re-attach

a particular link and whether that attachment is problematic.

For code anchors, given their varying content (e.g., anything

from a string to a full multi-line expression), we begin by

evaluating whether the position we have saved contains the

same code as the code link. If not, we then look for whether the

code from the code link exists anywhere within the document.

If that does not work, we use purely text-based matching

mechanisms to discern candidate matching points, since that

was the most successful method used in [42]. We weigh the

probability that the location is correct using a combination of

calculating the edit-distance between the two versions and the

surrounding code, and the difference between the candidate

line(s) of code and the original location. If there is a low

score or no matches, we mark the anchor as invalid and the

corresponding text in the story as in need of review. To assist

the author in finding either a new location to link the story

text to in the code or to discard the link, we present additional

metadata about the code (see Figure 1b-2 popover).

For definition references, the system searches the internal

representation to see whether the identifier is defined at its last

known location. If the definition is not there, the search will

expand outwards to see if the identifier is defined in a different

file and, if so, attaches to that location, but marks the link as

potentially invalid, considering it may be a different identifier

that just happens to have the same name. If the system cannot

find a definition for the particular referenced code entity,

the system uses the text-based re-anchoring algorithm. If the

algorithm does not return a result of a sufficiently highly-

weighted likelihood, it marks the reference as invalid, and the

surrounding text within the code story as in need of review by

the author.

A similar approach is used for checking identifier references

in the code. We begin by seeing whether there are one or more

references in the code in the last-known scope in which the

reference was used. If there are multiple candidate matches, we

find the reference with the most similar AST path to the saved

code anchor information. If there are no candidate matches,

we once again fall back on the text-matching algorithm and,

if the result is inadequate, mark the text within the story as

potentially invalid and in need of review.

IV. PRELIMINARY EVALUATION OF SODALITE

In order to assess the design concepts used in Sodalite, we

ran a preliminary user study. Participants were instructed to

select a JavaScript or TypeScript project of their choosing

2There are situations in which the documentation may go out-of-date that
our system would not capture, but, a study of documentation problems [8]
found that most cases in which the documentation went out-of-date was due
to the code changing, so we focus on that case with Sodalite.

and author a code story using Sodalite. Upon completion

of the authoring session, the first author and the participant

reverted their code to an earlier version3 to see how well the

maintenance system worked in identifying valid versus invalid

code links. We ran 4 participants, each session took about 90

minutes, participants were compensated $25 for their time,

and the study was approved by our institution’s Institutional

Review Board.

In our preliminary evaluation, we found that participants

were able to successfully use Sodalite and its features to

document their code. Sodalite also succeeded in determining

valid, invalid, and in need of review code links 86.5% of

the time. The cases in which Sodalite failed were due to the

system either missing a link due to the text and location being

too dissimilar or due to the original code being too generic

to find one singular attachment point – both of these cases

could be combated by adding in more heuristics about the code

and its surrounding context for the re-anchoring algorithm to

utilize. Nonetheless, these results lend preliminary support to

our design choices in Sodalite.

V. DISCUSSION AND FUTURE WORK

An obvious next step is to run a more comprehensive user

study to see how Sodalite authoring and usage generalizes

across more developers and their code. Our preliminary study

also did not evaluate if later readers found the code stories

useful or not. A potential study design may be to have one

set of developers author a code story on one version of a

code base, then have another set of developers on a different

version of the same code base attempt to use the authored

code stories to complete a programming task, such that every

aspect of Sodalite is evaluated.

A current limitation of Sodalite is that all of the mechanisms

for determining whether or not the story is out-of-date are

contingent upon the story including code links. The expec-

tation is that, given Sodalite being located within the IDE,

developers will naturally utilize that context and reference their

code within their code stories. Future versions of Sodalite may

benefit from additional mechanisms for assessing the validity

of the text in comparison to the code, for example, through

leveraging crowd-sourcing mechanisms for quality control [3],

[43].

We see Sodalite as an example of how leveraging a devel-

oper’s working context can be used to address long-standing

issues in software engineering, specifically documentation. By

understanding what the code the user is working on, Sodalite

was able to mark documentation as valid or invalid 86.5% of

the time, which would not be possible for static documentation

hosted on e.g., a web page. With the recent rise of large

language models (LLMs), this personalized and contextualized

approach to documentation could be further improved through

creating and summarizing documentation using LLMs that are

aware of the user’s working context.

3We considered requiring participants to document an old version of their
code but developers do not typically document old code and they may not
remember their old code well enough to document it.

112

ACKNOWLEDGMENTS

This research was funded in part by the NSF under grant

CCF-2007482 and by gifts from Google. Any opinions, find-

ings, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect

those of the sponsors. In addition, we would like to thank our

participants and our reviewers for their thoughtful input and

feedback.

REFERENCES

[1] A. Ju, H. Sajnani, S. Kelly, and K. Herzig, “A case study of onboarding
in software teams: Tasks and strategies,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pp. 613–623,
IEEE, 2021.

[2] A. Begel and B. Simon, “Novice software developers, all over again,” in
Proceedings of the Fourth International Workshop on Computing Edu-
cation Research, ICER ’08, (New York, NY, USA), p. 3–14, Association
for Computing Machinery, 2008.

[3] B. Dagenais and M. P. Robillard, “Creating and evolving developer
documentation: Understanding the decisions of open source contribu-
tors,” in Proceedings of the Eighteenth ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE ’10, (New
York, NY, USA), p. 127–136, Association for Computing Machinery,
2010.

[4] M. P. Robillard, “Turnover-induced knowledge loss in practice,” in
Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2021, (New York, NY, USA), p. 1292–1302,
Association for Computing Machinery, 2021.

[5] M. P. Robillard and R. DeLine, “A field study of API learning obstacles,”
Empirical Software Engineering, vol. 16, pp. 703–732, 2011.

[6] C.-A. Postava-Davignon, C. Kamachi, C. Clarke, G. Kushmerek, M. B.
Rettger, P. Monchamp, and R. Ellis, “Incorporating usability testing into
the documentation process,” Technical Communication, vol. 51, pp. 36–
44, Feb. 2004.

[7] S. Oney, C. Brooks, and P. Resnick, “Creating guided code explanations
with chat.codes,” Proc. ACM Hum.-Comput. Interact., vol. 2, nov 2018.

[8] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez,
L. Moreno, G. Bavota, and M. Lanza, “Software documentation issues
unveiled,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), (Montreal, QC, Canada), pp. 1199–1210, IEEE,
2019.

[9] M. P. Robillard, “What makes apis hard to learn? answers from devel-
opers,” IEEE Software, vol. 26, pp. 27–34, Oct. 2009.

[10] H. Zhang, S. Wang, T.-H. Chen, Y. Zou, and A. E. Hassan, “An empirical
study of obsolete answers on stack overflow,” IEEE Transactions on
Software Engineering, vol. 47, no. 4, pp. 850–862, 2021.

[11] E. Aghajani, C. Nagy, M. Linares-Vásquez, L. Moreno, G. Bavota,
M. Lanza, and D. C. Shepherd, “Software documentation: The prac-
titioners’ perspective,” in Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering, ICSE ’20, (New York, NY,
USA), p. 590–601, Association for Computing Machinery, 2020.

[12] Y. Shmerlin, I. Hadar, D. Kliger, and H. Makabee, “To document
or not to document? an exploratory study on developers’ motivation
to document code,” in Advanced Information Systems Engineering
Workshops: CAiSE 2015 International Workshops, Stockholm, Sweden,
June 8-9, 2015, Proceedings 27, pp. 100–106, Springer, 2015.

[13] J.-C. Chen and S.-J. Huang, “An empirical analysis of the impact
of software development problem factors on software maintainability,”
Journal of Systems and Software, vol. 82, no. 6, pp. 981–992, 2009.

[14] G. Uddin and M. P. Robillard, “How API documentation fails,” IEEE
Software, vol. 32, pp. 68–75, Aug. 2015.

[15] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional
developers comprehend software?,” in ICSE 2012, (New York, NY,
USA), pp. 632–542, ACM, 2012.

[16] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking
ssl development in an appified world,” in Proceedings of the 2013 AC
SIGSAC Conference on Computer and Communications Security, CCS
’13, (New York City, NY, USA), pp. 49–60, ACM, 2013.

[17] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are
code examples on an online q&a forum reliable? a study of api misuse
on stack overflow,” in ICSE 2018, (New York, NY, USA), pp. 886–896,
ACM, 2018.

[18] Microsoft, “Visual studio code,” 2022.

[19] Microsoft, “Typescript: Javascript with syntax for types.,” 2023.

[20] W. Maalej and M. P. Robillard, “Patterns of knowledge in api reference
documentation,” IEEE Transactions on Software Engineering, vol. 39,
no. 9, pp. 1264–1282, 2013.

[21] A. Head, C. Sadowski, E. Murphy-Hill, and A. Knight, “When not
to comment: Questions and tradeoffs with api documentation for c++
projects,” in Proceedings of the 40th International Conference on
Software Engineering, ICSE ’18, (New York, NY, USA), p. 643–653,
Association for Computing Machinery, 2018.

[22] T. C. Lethbirdge, J. Singer, and A. Forward, “How software engineers
use documentation: the state of the practice,” IEEE Software, vol. 20,
pp. 35–39, Nov. 2003.

[23] J. Nykaza, R. Messinger, F. Boehme, C. L. Norman, M. Mace, and
M. Gordon, “What programmers really want: results of a needs assess-
ment for sdk documentation,” in SIGDOC 2002, (New York, NY, USA),
pp. 133–141, ACM, 2002.

[24] M. Meng, S. M. Steinhard, and A. Schubert, “How developers use api
documentation: an observation study,” Communication Design Quar-
terly, vol. 7, pp. 40–49, 2019.

[25] S. Endrikat, S. Hanenberg, R. Robbes, and A. Stefik, “How do api
documentation and static typing affect api usability?,” in ICSE 2014,
(New York City, NY, USA), pp. 632–642, ACM, 2014.

[26] P. Chatterjee, M. A. Nishi, K. Damevski, V. Augustine, L. Pollock,
and N. A. Kraft, “What information about code snippets is available in
different software-related documents? an exploratory study,” in SANER
2017, (New York City, NY, USA), pp. 382–386, IEEE, 2017.

[27] A. Horvath, M. X. Liu, R. Hendriksen, C. Shannon, E. Paterson,
K. Jawad, A. Macvean, and B. A. Myers, “Understanding how pro-
grammers can use annotations on documentation,” in Proceedings of
the 2022 CHI Conference on Human Factors in Computing Systems,
CHI ’22, (New York, NY, USA), Association for Computing Machinery,
2022.

[28] C. J. Stettina and W. Heijstek, “Necessary and neglected? an empirical
study of internal documentation in agile software development teams,”
in Proceedings of the 29th ACM International Conference on Design
of Communication, SIGDOC ’11, (New York, NY, USA), p. 159–166,
Association for Computing Machinery, 2011.

[29] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source code,”
in 2010 17th Working Conference on Reverse Engineering, pp. 35–44,
IEEE, 2010.

[30] E. Aghajani, G. Bavota, M. Linares-Vásquez, and M. Lanza, “Auto-
mated documentation of android apps,” IEEE Transactions on Software
Engineering, vol. 47, no. 1, pp. 204–220, 2019.

[31] B. A. Myers and J. Stylos, “Improving api usability,” Communications
of the ACM, vol. 59, no. 6, pp. 62–69, 2016.

[32] M. Adeli, N. Nelson, S. Chattopadhyay, H. Coffey, A. Henley, and
A. Sarma, “Supporting code comprehension via annotations: Right
information at the right time and place,” in 2020 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), pp. 1–10,
IEEE, 2020.

[33] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Two studies of opportunistic programming: Interleaving web foraging,
learning, and writing code,” in CHI ’09, CHI ’09, (New York, NY, USA),
p. 1589–1598, Association for Computing Machinery, 2009.

[34] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, “Code bubbles: A working
set-based interface for code understanding and maintenance,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’10, (New York, NY, USA), p. 2503–2512, Association
for Computing Machinery, 2010.

[35] G. Taylor and S. Clarke, “A tour through code: Helping developers
become familiar with unfamiliar code,” in Psychology of Programming
Interest Group 33rd Annual Workshop, PPIG 2022, pp. 114–126.

[36] A. Horvath, B. Myers, A. Macvean, and I. Rahman, “Using annotations
for sensemaking about code,” in Proceedings of the 35th Annual ACM
Symposium on User Interface Software and Technology, UIST ’22, (New
York, NY, USA), Association for Computing Machinery, 2022.

113

[37] A. Y. Wang, A. Head, A. Zhang, S. Oney, and C. Brooks, “Colaroid:
A literate programming approach for authoring explorable multi-stage
tutorials,” in Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, CHI ’23.

[38] M. X. Liu, A. Kittur, and B. A. Myers, “To reuse or not to reuse? a
framework and system for evaluating summarized knowledge,” Proc.
ACM Hum.-Comput. Interact., vol. 5, apr 2021.

[39] A. Forward and T. C. Lethbridge, “The relevance of software documen-
tation, tools and technologies: A survey,” in Proceedings of the 2002
ACM Symposium on Document Engineering, DocEng ’02, (New York,
NY, USA), p. 26–33, Association for Computing Machinery, 2002.

[40] R. Holmes and A. Begel, “Deep intellisense: a tool for rehydrating evap-
orated information,” in Proceedings of the 2008 international working
conference on Mining software repositories, pp. 23–26, 2008.

[41] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of the
documentation essential to software maintenance,” in Proceedings of the
23rd Annual International Conference on Design of Communication:
Documenting amp; Designing for Pervasive Information, SIGDOC ’05,
(New York, NY, USA), p. 68–75, Association for Computing Machinery,
2005.

[42] S. P. Reiss, “Tracking source locations,” in Proceedings of the 30th
International Conference on Software Engineering, ICSE ’08, (New
York, NY, USA), p. 11–20, Association for Computing Machinery, 2008.

[43] M. Allahbakhsh, B. Benatallah, A. Ignjatovic, H. R. Motahari-Nezhad,
E. Bertino, and S. Dustdar, “Quality control in crowdsourcing systems:
Issues and directions,” IEEE Internet Computing, vol. 17, pp. 76–81,
2013.

114

